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Abstract

Background: Automated and data-driven methods for screening using natural language processing (NLP) and machine learning
may replace resource-intensive manual approaches in the usual care of patients hospitalized with conditions related to unhealthy
substance use. The rigorous evaluation of tools that use artificial intelligence (AI) is necessary to demonstrate effectiveness before
system-wide implementation. An NLP tool to use routinely collected data in the electronic health record was previously validated
for diagnostic accuracy in a retrospective study for screening unhealthy substance use. Our next step is a noninferiority design
incorporated into a research protocol for clinical implementation with prospective evaluation of clinical effectiveness in a large
health system.

Objective: This study aims to provide a study protocol to evaluate health outcomes and the costs and benefits of an AI-driven
automated screener compared to manual human screening for unhealthy substance use.

Methods: A pre-post design is proposed to evaluate 12 months of manual screening followed by 12 months of automated
screening across surgical and medical wards at a single medical center. The preintervention period consists of usual care with
manual screening by nurses and social workers and referrals to a multidisciplinary Substance Use Intervention Team (SUIT).
Facilitated by a NLP pipeline in the postintervention period, clinical notes from the first 24 hours of hospitalization will be
processed and scored by a machine learning model, and the SUIT will be similarly alerted to patients who flagged positive for
substance misuse. Flowsheets within the electronic health record have been updated to capture rates of interventions for the
primary outcome (brief intervention/motivational interviewing, medication-assisted treatment, naloxone dispensing, and referral
to outpatient care). Effectiveness in terms of patient outcomes will be determined by noninferior rates of interventions (primary
outcome), as well as rates of readmission within 6 months, average time to consult, and discharge rates against medical advice
(secondary outcomes) in the postintervention period by a SUIT compared to the preintervention period. A separate analysis will
be performed to assess the costs and benefits to the health system by using automated screening. Changes from the pre- to
postintervention period will be assessed in covariate-adjusted generalized linear mixed-effects models.

Results: The study will begin in September 2022. Monthly data monitoring and Data Safety Monitoring Board reporting are
scheduled every 6 months throughout the study period. We anticipate reporting final results by June 2025.

Conclusions: The use of augmented intelligence for clinical decision support is growing with an increasing number of AI tools.
We provide a research protocol for prospective evaluation of an automated NLP system for screening unhealthy substance use
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using a noninferiority design to demonstrate comprehensive screening that may be as effective as manual screening but less costly
via automated solutions.

Trial Registration: ClinicalTrials.gov NCT03833804; https://clinicaltrials.gov/ct2/show/NCT03833804

International Registered Report Identifier (IRRID): DERR1-10.2196/42971

(JMIR Res Protoc 2022;11(12):e42971) doi: 10.2196/42971
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Introduction

The COVID-19 pandemic has exposed major gaps in health
care delivery with limited resources and staffing. In 2020, deaths
related to drug overdose reached an all-time high with a record
93,000 deaths nationwide during the pandemic year [1]. The
number of substance use–related hospital visits outpaces visits
for heart disease and respiratory failure [2]. Despite the
recommendations from the US Preventive Services Task Force
for Unhealthy Drug Use Screening [3], hospital screening rates
remain low, with detection rates around 50% [4]. Manual
screening efforts within busy hospital settings impose staffing
requirements and administrative burdens, with the corresponding
missed opportunities to prioritize care for the most vulnerable
patients.

The prevalence of unhealthy substance use (nonmedical use of
opioids or benzodiazepines, illicit drugs, or alcohol) in
hospitalized patients is estimated to be 15% to 25%, far
exceeding that of the general population, and the hospital setting
is an important touchpoint for engaging patients [5,6]. Hospitals
currently screening for unhealthy substance use need better
approaches to identifying and treating patients, with less than
a quarter of patients with a substance use disorder receiving
treatment [7]. During the COVID-19 pandemic, screening efforts
became even more challenging with changes in workflow and
the reallocation of resources that further reduced manual
screening rates [8]. Meanwhile, substance misuse ranks second
among principal diagnoses for unplanned 7-day hospital
readmission rates [7,9].

As of 2017, over 80% of hospitals in the United States have
adopted an electronic health record (EHR) system [10]. Clinical
decision support (CDS) and intelligent data-driven alerts are
now part of federal incentive programs for meaningful use [11].
With access to EHR data and financial incentives to improve
quality care, hospitals are increasingly well equipped to leverage
computational resources to improve screening efforts via
automated solutions [12,13]. The potential in digital phenotyping
for substance use identification and treatment is real [14], but
few pragmatic studies have been implemented to examine their
effectiveness. Prior studies have demonstrated that the EHR
contains information needed to identify cases of substance use
[15,16]. However, leveraging data-driven methods with artificial
intelligence (AI) and automating screening approaches remain
in their infancy [17].

Although information about substance use is routinely recorded
in providers’ intake notes in the EHR, it is neither organized
nor prioritized during routine care for CDS [18]. Automated,

data-driven solutions with natural language processing (NLP)
can automatically extract important risk factors from clinical
notes [19]. The computational methods of NLP derive semantic
features from clinical notes, from which machine learning
models can predict substance misuse. We previously published
and made publicly available an NLP screening tool for different
types of substance misuse [8]. During the validation of the
algorithm, we achieved sensitivity and specificity greater than
85% using a convolutional neural network (CNN) from clinical
notes with a false negative rate of less than 5% to screen for
unhealthy alcohol use, unhealthy opioid use, and unhealthy
nonopioid drug use (ie, cocaine and amphetamines).

In the advent of the digital era of AI in medicine, machine
learning classifiers and AI-driven models are now being
developed at an exponential pace. However, very few NLP
systems have been translated into real-world clinical contexts
with rigorous evaluation [20]. We provide a study protocol on
one of the first NLP-driven solutions using our validated
algorithm with the hypothesis that we can achieve a
comprehensive and automated screening system that reduces
workforce resources without compromising effectiveness. To
test our hypothesis, we plan to examine health outcomes in a
noninferiority design coupled with a cost-effectiveness analysis.
More specifically, we propose a pre-post segmented regression
analysis to evaluate the effectiveness of the automated screening
tool in maintaining or increasing (1-tailed test) the proportion
of patients who screened positive and received any of a
composite group of interventions compared to usual care (eg,
interviewer-administered screening).

Methods

Setting and Study Design
The study will be implemented at Rush University Medical
Center (RUMC) across the surgical and medical hospital
inpatient wards. This prospective evaluation will target all adult
(18-89 years of age) hospitalizations over a 24-month period
(12 months of usual care with manual screening and 12 months
under the implementation of automated screening) and an
additional 6-month follow-up period for secondary outcomes.
We will use pre-post segmented regression analysis with
noninferiority hypothesis testing to evaluate the impact of the
substance misuse classifier compared to usual care. The trial is
registered at ClinicalTrials.gov (NCT03833804).
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Preintervention Period: Usual Care With Manual
Screening
In 2017, RUMC launched a multidisciplinary Substance Use
Intervention Team (SUIT) to address the opioid epidemic
through a universal screening and Screening, Brief Intervention,
and Referral to Treatment (SBIRT) program in the hospital [21].
Screening, intervention flow sheets, and consult order sets were
built into EHR-driven workflows for inpatient nurses and social
workers. Leveraging the EHR infrastructure, the manual
screening by nurses and social workers was driven by four key
components: (1) a single workflow that connects the nursing
and social work navigators and allows both disciplines to
document screening information into a common flowsheet in
the EHR; (2) a status column in the unit patient list where the
social work team indicates the current stage of the intervention
for each patient; (3) a consult order to addiction medicine that
operates within a work queue managed by the SUIT; and (4) a
flowsheet for the SUIT to document the details of the
intervention. Specifically, if patients reported positive to the
universal manual screening during the rooming process, an
indicator in the substance use column would update to signal a
social worker to conduct a full manual screening with the
Alcohol Use Disorders Identification Test (AUDIT) and/or Drug
Abuse Screening Tool (DAST). As part of usual care and in the
preintervention period, RUMC will perform an initial 2-question
universal screening for alcohol (5 or more drinks for men and
4 or more drinks for women) and drugs (any illicit drug use in
the past year). Those who screen positive will receive a full
screening with the 10-item AUDIT [22] or 10-item DAST [23].
Once completed, the social worker may provide a brief
motivational interviewing intervention for an AUDIT score
above 4 or DAST score above 1. For higher risk scores, the
social worker may recommend a consult to the SUIT for
addiction services. Alternatively, primary teams will be able to
consult the SUIT directly, at which time, AUDITs and DASTs
will be performed by the SUIT themselves. The consulting team
determines with the patient whether to initiate medication and
linkage to outpatient services upon discharge. If ready, patients
may begin medication and, upon discharge, receive individual
and group psychotherapy, case management, and continued
medication treatment at an outpatient addiction medicine clinic.

Postintervention Period: AI-Assisted Screening
We previously published a substance misuse screening tool
using NLP and machine learning from the clinical notes,
Substance Misuse Algorithm for Referral to Treatment using
Artificial Intelligence (SMART-AI) [8]. SMART-AI was
developed on hospitalized RUMC patients between October 1,
2017, and December 31, 2019, with temporal validation between
January 1, 2020, and December 31, 2020. In hospitalized
patients, the SMART-AI CNN used the first 24 hours of EHR
notes to identify and screen for multiple types of unhealthy
substance use (unhealthy alcohol use, unhealthy opioid use, and
unhealthy nonopioid drug use). Temporal validation of the
classifier during the COVID-19 pandemic demonstrated a mean
area under the receiver operating characteristic curve of 0.97
(95% CI 0.96-0.98) and a mean area under the precision-recall
curve of 0.69 (95% CI 0.64-0.74) for the different types of
unhealthy substance use. The number needed to evaluate (NNE)

on positive screenings to identify a true positive was 1.5 for
unhealthy alcohol use, 1.3 for unhealthy opioid use, and 2.6 for
unhealthy nonopioid drug use. This created 39, 26, and 16 alerts
per 1000 hospitalized patients for each group, respectively. This
was deemed an acceptable workload by the SUIT clinical care
team. In the intervention period, the manual screening performed
by nurses and social workers will be replaced with SMART-AI.

The EHR system at RUMC is provided through Epic (Epic
Systems Corporation). We designed an approach to collect notes
from the first 24 hours of hospitalization from Epic, which is
how SMART-AI was originally developed and validated [8].
With an average time of 1.6 days from a patient’s admission to
receipt of a SUIT consultation during usual care, we anticipate
this is sufficient time for the automated screener to operate and
clinical interventions to occur after admission notes are
collected.

During the postintervention period, an alert will run every 24
hours after a nightly data extraction from the front-end EHR
(Epic) into the back-end data warehouse (Clarity) at RUMC.
SMART-AI will operate using the daily EHR notes collected
in the data warehouse that are preprocessed through an NLP
engine and fed into the SMART-AI machine learning model in
a Microsoft Azure cloud computing environment. The output
classifications for screen-positive cases will be published as
reports routed through a secure environment for viewing. At
RUMC, the patients who flagged positive for substance misuse
will be reported with an encrypted email routed to the SUIT
provider each morning, after the server is refreshed with the
last 24 hours of data.

NLP Pipeline
Linguistic preprocessing of the EHR to extract clinical
information from unstructured text will be managed via an
open-source software called the Clinical Text and Knowledge
Extraction System (cTAKES; version 4.0) [24]. cTAKES
processes clinical notes; identifies types of clinical named
entities such as drugs, diseases/disorders, signs/symptoms,
anatomical sites, and procedures; and maps them to concepts
from the National Library of Medicine's Universal Medical
Language System (UMLS) Metathesaurus. cTAKES is a
modular pipeline that first breaks the EHR note into tokens and
sentences. Next, it annotates the word tokens with
parts-of-speech tags (eg, noun and adjective). Third, candidate
phrases are formed and matched to a dictionary of medical
concepts sourced from the UMLS. Mappings convert the raw
text to standardized medical terminologies such as SNOMED
CT and RxNORM, using concept codes from the UMLS called
Concept Unique Identifiers (CUIs). The text spans from the
EHR notes are ultimately transformed into sequences of CUIs
representing UMLS-named entity mentions (diseases, symptoms,
anatomy, and procedures). For instance, “heroin use” is assigned
“C0600241” as its CUI and is a separate CUI from “history of
heroin use,” which is “C3266350.”

The sequences of CUIs from the notes collected in the first 24
hours of hospitalization are concatenated into a single document
and converted into sequences of dense vectors known as CUI
embeddings, which in turn serve as the input layer to
SMART-AI, a multilabel CNN. All SNOMED CT and

JMIR Res Protoc 2022 | vol. 11 | iss. 12 | e42971 | p. 3https://www.researchprotocols.org/2022/12/e42971
(page number not for citation purposes)

Joyce et alJMIR RESEARCH PROTOCOLS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


RxNORM CUIs mapped from the notes are available to the
model as 300-dimensional CUI embeddings. There is no
limitation to the number of CUIs to be fed into the model, which
is an advantage over pretrained language model transformers
that commonly have a token limitation. SMART-AI will provide
the final output classification for screen-positive cases for
unhealthy alcohol, opioid, and/or nonopioid drug use. We will
use a cutoff of 0.05 on the predicted probabilities for each
substance use label because this provided the best test
characteristics in the validation study [8]. The previously trained
and validated CNN model for SMART-AI is available on Github
[25], and more technical details about the model are detailed in
the development and validation study [8]. No changes were
made to the implementation of this protocol.

Data Collection and Management
The clinical SUIT has previously established outcome data
collection methods using the EHR [26,27]. Specific to this study,

flowsheets within the EHR have been updated with hospital
operations to capture additional SUIT consult parameters (Table
1). Preconsult information includes the consult modality
(inpatient screen, prior patient of SUIT, ad hoc, and emergency
department–initiated), the consult reason (evaluation for
treatment initiation, continuity for medication-assisted treatment
[MAT] maintenance, and acute care adjustment of MAT), and
inpatient screen exemption reason (intoxication/overdose,
withdrawal, and related physical ailment). Additionally, the
post-SUIT consult disposition (complete consult, patient refusal,
and incomplete consult) will be another recorded parameter
within the EHR. Beginning in the preintervention period, the
data will be extracted monthly from the EHR to monitor quality
and completeness and will be presented biannually at scheduled
Data Safety Monitoring Board (DSMB) meetings.

Table 1. Components of the intervention electronic health record data capture.

DescriptionComponent

Composite outcome

A social worker provides a brief intervention using motivational interviewing for alcohol or stimulant
use

Brief intervention/motivational interviewing

Prescription, free kit from clinic, or order for home kitNaloxone dispensing

Buprenorphine, methadone, or naltrexone (OUDb); acamprosate, gabapentin, or disulfiram (AUDc)MATa

Consultation team includes specialists from emergency medicine, psychiatry, toxicology, social
work, and pharmacology

Addition consult

Individual or group psychotherapy, case management, and continued MATReferral to outpatient treatment

Consult characteristics

Inpatient screen, established patient, ad hoc, and emergency department–initiatedConsult modality

Evaluation for initial treatment, MAT maintenance, MAT adjustment, not substance use–related,
and non-MAT disposition planning

Consult reason

Intoxication/overdose, withdrawal, and related physical ailment (endocarditis, alcoholic cirrhosis,
and acute psychosis)

Inpatient screen exemption

Consultant, supporting other service, and curbsideSUITd provider role

Incomplete, patient refusal, patient discharged, and completed consultDisposition

aMAT: medication-assisted treatment.
bAUD: alcohol use disorder.
cOUD: opioid use disorder.
dSUIT: Substance Use Intervention Team.

Primary and Secondary Outcomes
The primary outcome is the count of patients who had an
addiction consult and received the composite intervention of
any of the following: (1) naloxone dispensing (prescription,
free kit from clinic, or order for home kit); (2) MAT
(buprenorphine, methadone, naltrexone, acamprosate,
gabapentin, or disulfiram); (3) referral to outpatient treatment;
and/or (4) brief intervention/motivational interviewing for
substance misuse. Each component will be indicated separately
in the EHR flowsheet for the hospital encounter (Table 1).

The secondary outcome is all-cause rehospitalizations following
6 months from the index hospital encounter. Further exploratory
outcomes include each component of the primary outcome
analyzed separately: naloxone dispensing, MAT, referral to
outpatient treatment, and brief intervention/motivational
interviewing for unhealthy substance use. We will also
characterize the time to consult and discharge rates against
medical advice (AMA).

Analysis Plan
Descriptive statistics will be reported for demographic and
clinical variables stratified by pre- and postintervention periods.
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Outcomes will be compared by time period (pre- vs
postintervention) using generalized linear mixed effects models
(GLMMs), which will allow for appropriate modeling of the
different dependent variables, including continuous, count, or
categorical, and to include random effects to account for
correlated data due to patients with multiple index
hospitalizations. For the primary end point, we will first plot
the proportion of hospitalized patients who received any
component of the composite outcome by the month of index
hospitalization to examine seasonality, trends, and outlying
values. The piecewise GLMM will be used to model the
composite outcome. The primary explanatory variable will be
a dichotomous variable for the time period (preintervention vs
postintervention), and the covariates will include age, sex,
race/ethnicity, and payor status. This model will take the form
of:

where pij is the probability of the composite outcome for patient
i at hospitalization j, α is the overall intercept, β is the
coefficient for time period, Xij is the design matrix of covariates,

ui is the patient-level random intercept, and ij is the random
error term. Additional variables will be considered including
season/month, primary diagnosis, and the unit, with fit statistics
(Akaike information criterion [AIC] and Bayesian information
criterion [BIC]) used to guide model selection. A similar GLMM
will be specified to predict rehospitalization for the secondary
end point.

For the exploratory end point of time to consult, among the
subset receiving the composite outcome, a Poisson mixed-effects
regression model will regress time to consult on time period
(preintervention vs postintervention) and covariates. The rate
of discharge AMA will be modelled similarly to the primary
end point with mixed-effects logistic regression. Finally, the
addition of interaction terms to the primary GLMM (eg, payor
by intervention period) will be performed to test if some
subgroups of patients may be more or less likely to experience
the composite end point after the implementation of SMART-AI.

Our hospitalization-level analysis plan assumes the degree of
seasonality and autocorrelation in this design will be minimal.
If the assumption holds true, mixed-effects regression, which
is flexible regarding outcome variable distribution and can
account for both fixed effects (covariates) and random effects
(nesting), is preferable to time-series approaches, which directly
model the aggregated data. We believe this assumption is
reasonable as we found a white noise model using 3 years of
prior SUIT data (August 2018 to July 2020), which
demonstrated negligible autocorrelation (AR1,1=0.04, SD 0.22;
P=.86) and required no differencing to achieve stationarity
(constant mean and constant variance over time). We will verify
whether this assumption holds for the study period, and an
interrupted time-series approach using autoregressive integrated
moving average (ARIMA) models will be applied should
autocorrelation be substantial [28]. In this case, a transformation
will be applied to stabilize the variance over time if the data are
heteroscedastic. Differencing will be applied to induce

stationarity, such as a difference to account for linear trend (d=1,
degree of nonseasonal differencing), and autocorrelation
functions (ACFs) will be plotted to verify stationarity. After
differencing, ACFs and partial ACFs will be used to determine
the orders of autoregression or moving average that will correct
the remaining autocorrelation. We will formally test if the
intervention will promote a step change (binary indicator for a
level shift when intervention begins) and a ramp effect (the
variable takes the value of 0 before the intervention and
increases by 1 for each month following the beginning of the
intervention). Fit statistics (AIC and BIC) and residual analysis
(Ljung-Box test for white noise) will be used to identify a
parsimonious and appropriate model based on ARIMA orders,
differencing assumptions, and parameters for intervention impact
(step, pulse, or ramp).

Cost-Benefit Analysis
In the cost-benefit analysis, both costs and consequences of
alternatives are measured in monetary units [29]. We will
conduct in-depth interviews with SUIT personnel and brief
interviews with RUMC staff (nurses and social workers) to
query about the fixed and variable costs associated with
establishing and implementing substance misuse screening
during the usual care with manual screening and AI-assisted
screening periods. During both periods, we will ask about the
time cost of staff receiving training and administering the
universal screening (not applicable during the
intelligence-assisted screening period), secondary screening,
and brief intervention/motivational interviewing for unhealthy
substance use, which is not a billable service within a
hospitalization context. The time cost of staff and resources
dedicated to building EHR infrastructure to support manual and
AI-assisted screenings will also be calculated (Multimedia
Appendix 1). Costs associated with the index hospitalization,
including naloxone dispensing, MAT, other treatments, and
same-hospital rehospitalizations, will be extracted from the
EHR and administrative billing records. The cost-benefit
analysis will be conducted using the health system perspective
and within the hospitalization episode. We will use a
mixed-effects generalized linear model with log link function
and gamma distribution to calculate the adjusted cost or saving
per index hospitalization during the preintervention and
postintervention periods. Our analysis will adjust for
patient-level sociodemographic and clinical characteristics and
include random intercepts to account for multiple index
hospitalizations per patient. We will repeat the analysis with
and without the cost of same-hospital rehospitalizations. Results
from the regression analysis will be combined with data
collected from the interviews to calculate the incremental cost
or saving per index hospitalization receiving substance misuse
screening and the incremental cost or saving per index
hospitalization receiving any component of the composite
outcome during the manual screening period compared to the
AI-screening period. We will also calculate the average cost of
the SBIRT program per patient and the average cost of
composite outcome per patient during each intervention period.
The Hospital Care component of the Personal Health Care Price
Index published by the Centers for Medicare and Medicaid
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Services will be used to adjust costs to analyze cost per year in
US dollars [30].

Sample Size Calculations
In 2020, on average, approximately 2400 (SD 250) patients
were hospitalized each month with 94 (SD 9) SUIT consults
performed at RUMC. Overall, a median of 3.9% (IQR
3.5%-4.2%) of hospitalized patients received a SUIT consult
during each month of 2020 (Figure 1). This period of time was
chosen to inform power as it represents a “new normal” for
SUIT practices in the era of COVID-19. We hypothesize that
additional components of the composite outcome will lead to
a new preintervention outcome rate of 4.8% of hospitalized

patients. For the primary end point, the null hypothesis is that
the difference in the proportion receiving the composite outcome
P2 (postintervention) and P1 (preintervention) is less than or
equal to a noninferiority difference D0 of 0.5% such that H0:
P2 – P1 ≤ D0. This corresponds to the SMART-AI time period
intervention rate of 4.3% or less under the null hypothesis of
inferiority. A total sample size of 60,000, or 30,000
hospitalizations per time period, will have 82% power to detect
a 0% difference using a 1-sided Z test and α=.025 (Table 2).
Power is slightly attenuated in the setting for mixed-effects
logistic regression with covariates compared to the simple Z
test; however, we expect a minimal correlation between time
period and covariates, or R-squared close to zero (Figure 2).

Figure 1. Monthly SUIT consults from 2018-2020. SUIT: Substance Use Intervention Team.

Table 2. Power estimates for a noninferiority hypothesisa.

Power for 2 proportionsDifference at which
power is calculated

Noninferiority differenceProportion with outcomeSetting

PostinterventionPreintervention

41%–0.002–0.0050.0460.0481

63%–0.001–0.0050.0470.0482

82%0.000–0.0050.0480.0483

93%0.001–0.0050.0490.0484

98%0.002–0.0050.0500.0485

aAssumptions: α=.025, n=60,000 (50% per time period).
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Figure 2. Power curve for covariate-adjusted logistic regression analysis. r-sq: R-squared.

Ethical Considerations
The project was considered secondary research, for which a
waiver of consent was approved by the RUMC IRB on May
10, 2022.

Results

The methods of screening and outcomes are summarized by
time period in Figure 3. The preintervention study period will

formally begin in September 2022 after a new round of
education and in-servicing on screening to social workers and
nurses for the manual screening phase. Monthly data monitoring
and DSMB reporting are scheduled every 6 months throughout
the study period. We anticipate reporting final results by June
2025.
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Figure 3. Study components and outcomes. AI: artificial intelligence. SMART-AI: Substance Misuse Algorithm for Referral to Treatment Using
Artificial Intelligence.

Discussion

There remains a paucity of protocols for evaluating AI systems
in health care, because deploying such systems in large, complex
health systems is relatively new [31]. Many AI models that are
published and validated using retrospective data never reach
the implementation phase for bedside evaluation [32]. Herein,
we provide a protocol incorporating an automated substance
use screening tool into an established screening program with
the intent to improve throughput and efficiency over manual
procedures. Our use case is an example of an AI system intended
to improve efficiency and throughput within a reasonable time
frame for hospital operations. In these cases, statistically
superior performance on outcomes may not be expected or
required for prospective implementation, and interventions may
be desirable if they are both substantially equivalent
(noninferior) on clinical outcomes and cost-effectiveness, given
the high cost of building IT infrastructure and hiring vendors
with high costs in licensing and software support. Our protocol
provides one of the first use cases of NLP in CDS with
AI-assisted screening for unhealthy substance use.

To our knowledge, no systems currently exist for AI-assisted
screening of unhealthy substance use in health care settings.
Screening rates for substance use disorders in health care
systems remain low with many missed opportunities for care
interventions, especially in emergency department settings
where the prevalence of unhealthy substance use is high [33].
Further, comprehensive screening programs are needed to better
understand the epidemiology and morbidity of substance
use–related conditions. The total annual estimated attributable
medical cost in patients with substance use–related admissions
is US $13.2 billion, including US $7.6 billion from

alcohol-related disorders alone [34]. The cost-effectiveness of
treatment for hospitalized patients with substance use disorders
has been described [21,35], but the role of an AI-assisted
screening approach to further improve screening efforts and
how it translates to health outcomes and cost remains unknown.

Past work on AI health systems has surfaced the following
obstacles in going from research and development environments
into clinical settings: (1) culture/personnel, (2) clinical utility
of AI tools, (3) financing, (4) technology support, and (5)
adequate data [36]. We provide an in-house solution by working
with our data science team to develop a novel screening tool to
address the priority of hospital-wide screening. The clinical
utility of the tool and return on investment will be examined in
our primary outcomes. Additional challenges remain in
information systems discovery and program management with
clinical champions and executive sponsorship to help align with
institutional business needs. Using open-source software for
NLP processing and following best practices in the model
evaluation should help keep costs low. However, costs in the
cloud computing platform with Health Level Seven (HL7)
standards and EHR vendor integration have limited our
implementation to a fully integrated CDS that is embedded
directly into the EHR. Less costly steps to leverage existing
data warehouse capabilities are currently planned as an
alternative to the integrated EHR workflow to provide daily
screening reports to the care team. Ultimately, this may affect
the process measures and, in turn, proposed outcomes.

More protocols are needed describing AI-assisted CDS tools
for hospital implementation with an evaluation framework that
is conducive to system-wide implementation. Although
conventional parallel-group randomized controlled trials may
be considered the gold standard for evaluation, they are costly
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and require substantial external resources to be implemented.
Alternatives such as the stepped wedge cluster randomized trial
offer operational efficiency and some cost reductions [37] but
can introduce new biases and require larger sample sizes to
achieve similar power. When randomized trials are not feasible
due to available resources, carefully selected quasi-experimental
designs provide good alternatives for evaluation. Without
randomization, these designs have limitations including the
potential for bias due to secular trends and confounders, which
may only partially be controlled for analytically. Additionally,
with widespread implementation across a large hospital, any
single condition or disease contributes to a low prevalence of
cases monthly and may prove difficult to evaluate effectively.
A low case rate may limit statistical power in analytic
approaches such as the interrupted time-series design [38].

This protocol follows best practices in reporting our AI system
and implementation approach, with an evaluation framework
on large-scale effectiveness [39]. In addition, we have an
established DSMB to also provide oversight into safety and
ethics. We are meeting some of the core components of the
Quadruple Aim to enhance health care efficiency [40]. Reducing
costs and improving population health are the components we
address, but our protocol is limited in examining other aims
such as patient experience and provider well-being. Future work
should include protocols incorporating the other components
of the Quadruple Aims for optimizing health care delivery.

We attempt to minimize limitations in the pre-post design by
using a well-powered but short time frame to minimize secular
trends and by collecting extensive patient characteristics to
control for potential changes to the demographics of our target
population over time. Nevertheless, limitations of our pragmatic
study include disruptions in hospital staffing to perform the
consultations recommended by the AI system and that threaten
the fidelity of the automated screening. In addition, unpredicted
secular trends may occur and introduce additional confounding
into the study or disruptions in health IT services to maintaining
and updating the software dependencies for the AI infrastructure.
Alternative strategies include incorporating implementation
frameworks into the study protocol that are capable of achieving
a rapid plan-do-study-act cycle to meet the operational needs
of the health system and minimize disruptions, so that
appropriate evaluation of the AI system’s effectiveness may be
achieved.

The successful implementation of the SMART-AI screening
tool in hospitalized patients is a step toward an automated and
comprehensive universal screening system for unhealthy
substance use. We expect our results to demonstrate that the
automated screener will increase the proportion of hospitalized
patients with unhealthy substance use who screen positive and
receive a brief intervention or referral to treatment. The
dissemination of the expected results from this research would
allow standardized and scalable “NLP-capable” measures for
health care systems to identify patients with unhealthy substance
use.

Acknowledgments
Research reported in this publication was supported by the National Institute on Drug Abuse of the National Institutes of Health
(NIDA R01DA051464; CJ, TWM, JN, ER, HMT, BS, DD, MKO, MA) and the THYME project (NIH R01LM010090; DD).

Data Availability
Data sharing is not applicable to this publication as this is a protocol paper and data collection has not begun.

Conflicts of Interest
None declared.

Multimedia Appendix 1
Overview of data elements for the cost-benefit analysis.
[DOCX File , 16 KB-Multimedia Appendix 1]

References

1. Brown KG, Chen CY, Dong D, Lake KJ, Butelman ER. Has the United States reached a plateau in overdoses caused by
synthetic opioids after the onset of the COVID-19 pandemic? examination of Centers for Disease Control and Prevention
data to November 2021. Front Psychiatry 2022 Jul 7;13:947603 [FREE Full text] [doi: 10.3389/fpsyt.2022.947603] [Medline:
35873233]

2. Owens PL, Fingar KR, McDermott KW, Muhuri PK, Heslin KC. Inpatient stays involving mental and substance use
disorders, 2016. In: Healthcare Cost and Utilization Project (HCUP) Statistical Briefs. Rockville, MD: Agency for Healthcare
Research and Quality (US); Mar 26, 2019.

3. US Preventive Services Task Force, Krist AH, Davidson KW, Mangione CM, Barry MJ, Cabana M, et al. Screening for
unhealthy drug use: US Preventive Services Task Force Recommendation Statement. JAMA 2020 Jun 09;323(22):2301-2309.
[doi: 10.1001/jama.2020.8020] [Medline: 32515821]

JMIR Res Protoc 2022 | vol. 11 | iss. 12 | e42971 | p. 9https://www.researchprotocols.org/2022/12/e42971
(page number not for citation purposes)

Joyce et alJMIR RESEARCH PROTOCOLS

XSL•FO
RenderX

https://jmir.org/api/download?alt_name=resprot_v11i12e42971_app1.docx&filename=ffb5597fb394ff268c1dc3b19f0dd7a9.docx
https://jmir.org/api/download?alt_name=resprot_v11i12e42971_app1.docx&filename=ffb5597fb394ff268c1dc3b19f0dd7a9.docx
https://europepmc.org/abstract/MED/35873233
http://dx.doi.org/10.3389/fpsyt.2022.947603
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=35873233&dopt=Abstract
http://dx.doi.org/10.1001/jama.2020.8020
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32515821&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/


4. Serowik KL, Yonkers KA, Gilstad-Hayden K, Forray A, Zimbrean P, Martino S. Substance use disorder detection rates
among providers of general medical inpatients. J Gen Intern Med 2021 Mar 27;36(3):668-675 [FREE Full text] [doi:
10.1007/s11606-020-06319-7] [Medline: 33111239]

5. White AM, Slater ME, Ng G, Hingson R, Breslow R. Trends in alcohol-related emergency department visits in the United
States: results from the Nationwide Emergency Department Sample, 2006 to 2014. Alcohol Clin Exp Res 2018 Feb
02;42(2):352-359. [doi: 10.1111/acer.13559] [Medline: 29293274]

6. Schulte MT, Hser Y. Substance use and associated health conditions throughout the lifespan. Public Health Rev 2013 Dec
03;35(2) [FREE Full text] [doi: 10.1007/BF03391702] [Medline: 28366975]

7. Park-Lee E, Lipari RN, Hedden SL, Kroutil LA, Porter JD. Receipt of services for substance use and mental health issues
among adults: results from the 2016 National Survey on Drug Use and Health. In: CBHSQ Data Review. Rockville, MD:
Substance Abuse and Mental Health Services Administration (US); Sep 2017.

8. Afshar M, Sharma B, Dligach D, Oguss M, Brown R, Chhabra N, et al. Development and multimodal validation of a
substance misuse algorithm for referral to treatment using artificial intelligence (SMART-AI): a retrospective deep learning
study. Lancet Digit Health 2022 Jun;4(6):e426-e435 [FREE Full text] [doi: 10.1016/S2589-7500(22)00041-3] [Medline:
35623797]

9. Fingar KR, Barrett ML, Jiang HJ. A comparison of all-cause 7-day and 30-day readmissions, 2014. In: Healthcare Cost
and Utilization Project (HCUP) Statistical Briefs. Rockville, MD: Agency for Healthcare Research and Quality (US); Oct
2017.

10. Adler-Milstein J, Holmgren A, Kralovec P, Worzala C, Searcy T, Patel V. Electronic health record adoption in US hospitals:
the emergence of a digital "advanced use" divide. J Am Med Inform Assoc 2017 Nov 01;24(6):1142-1148 [FREE Full text]
[doi: 10.1093/jamia/ocx080] [Medline: 29016973]

11. Lite S, Gordon WJ, Stern AD. Association of the meaningful use electronic health record incentive program with health
information technology venture capital funding. JAMA Netw Open 2020 Mar 02;3(3):e201402 [FREE Full text] [doi:
10.1001/jamanetworkopen.2020.1402] [Medline: 32207830]

12. Maletzky A, Böck C, Tschoellitsch T, Roland T, Ludwig H, Thumfart S, et al. Lifting hospital electronic health record data
treasures: challenges and opportunities. JMIR Med Inform 2022 Oct 21;10(10):e38557 [FREE Full text] [doi: 10.2196/38557]
[Medline: 36269654]

13. Liu N, Xie F, Siddiqui FJ, Ho AFW, Chakraborty B, Nadarajan GD, et al. Leveraging large-scale electronic health records
and interpretable machine learning for clinical decision making at the emergency department: protocol for system development
and validation. JMIR Res Protoc 2022 Mar 25;11(3):e34201 [FREE Full text] [doi: 10.2196/34201] [Medline: 35333179]

14. Hsu M, Ahern DK, Suzuki J. Digital phenotyping to enhance substance use treatment during the COVID-19 pandemic.
JMIR Ment Health 2020 Oct 26;7(10):e21814 [FREE Full text] [doi: 10.2196/21814] [Medline: 33031044]

15. Palumbo SA, Adamson KM, Krishnamurthy S, Manoharan S, Beiler D, Seiwell A, et al. Assessment of probable opioid
use disorder using electronic health record documentation. JAMA Netw Open 2020 Sep 01;3(9):e2015909 [FREE Full
text] [doi: 10.1001/jamanetworkopen.2020.15909] [Medline: 32886123]

16. Chartash D, Paek H, Dziura JD, Ross BK, Nogee DP, Boccio E, et al. Identifying opioid use disorder in the emergency
department: multi-system electronic health record-based computable phenotype derivation and validation study. JMIR Med
Inform 2019 Oct 31;7(4):e15794 [FREE Full text] [doi: 10.2196/15794] [Medline: 31674913]

17. Barenholtz E, Fitzgerald ND, Hahn WE. Machine-learning approaches to substance-abuse research: emerging trends and
their implications. Curr Opin Psychiatry 2020 Jul;33(4):334-342. [doi: 10.1097/YCO.0000000000000611] [Medline:
32304429]

18. Smothers BA, Yahr HT. Alcohol use disorder and illicit drug use in admissions to general hospitals in the United States.
Am J Addict 2005 Jan;14(3):256-267. [doi: 10.1080/10550490590949433] [Medline: 16019976]

19. Sheikhalishahi S, Miotto R, Dudley JT, Lavelli A, Rinaldi F, Osmani V. Natural language processing of clinical notes on
chronic diseases: systematic review. JMIR Med Inform 2019 Apr 27;7(2):e12239 [FREE Full text] [doi: 10.2196/12239]
[Medline: 31066697]

20. Lederman A, Lederman R, Verspoor K. Tasks as needs: reframing the paradigm of clinical natural language processing
research for real-world decision support. J Am Med Inform Assoc 2022 Sep 12;29(10):1810-1817 [FREE Full text] [doi:
10.1093/jamia/ocac121] [Medline: 35848784]

21. Thompson HM, Faig W, VanKim NA, Sharma B, Afshar M, Karnik NS. Differences in length of stay and discharge
destination among patients with substance use disorders: the effect of Substance Use Intervention Team (SUIT) consultation
service. PLoS One 2020 Oct 9;15(10):e0239761 [FREE Full text] [doi: 10.1371/journal.pone.0239761] [Medline: 33035229]

22. Reinert DF, Allen JP. The Alcohol Use Disorders Identification Test (AUDIT): a review of recent research. Alcoholism
Clin Exp Res 2002 Feb;26(2):272-279. [doi: 10.1111/j.1530-0277.2002.tb02534.x]

23. Yudko E, Lozhkina O, Fouts A. A comprehensive review of the psychometric properties of the Drug Abuse Screening Test.
J Subst Abuse Treat 2007 Mar;32(2):189-198. [doi: 10.1016/j.jsat.2006.08.002] [Medline: 17306727]

24. Apache cTAKES. URL: https://ctakes.apache.org [accessed 2022-12-08]
25. SMART-AI. 2022. URL: https://github.com/Rush-SubstanceUse-AILab/SMART-AI [accessed 2022-12-08]

JMIR Res Protoc 2022 | vol. 11 | iss. 12 | e42971 | p. 10https://www.researchprotocols.org/2022/12/e42971
(page number not for citation purposes)

Joyce et alJMIR RESEARCH PROTOCOLS

XSL•FO
RenderX

https://europepmc.org/abstract/MED/33111239
http://dx.doi.org/10.1007/s11606-020-06319-7
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33111239&dopt=Abstract
http://dx.doi.org/10.1111/acer.13559
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=29293274&dopt=Abstract
https://europepmc.org/abstract/MED/28366975
http://dx.doi.org/10.1007/BF03391702
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28366975&dopt=Abstract
https://linkinghub.elsevier.com/retrieve/pii/S2589-7500(22)00041-3
http://dx.doi.org/10.1016/S2589-7500(22)00041-3
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=35623797&dopt=Abstract
https://europepmc.org/abstract/MED/29016973
http://dx.doi.org/10.1093/jamia/ocx080
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=29016973&dopt=Abstract
https://europepmc.org/abstract/MED/32207830
http://dx.doi.org/10.1001/jamanetworkopen.2020.1402
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32207830&dopt=Abstract
https://medinform.jmir.org/2022/10/e38557/
http://dx.doi.org/10.2196/38557
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=36269654&dopt=Abstract
https://www.researchprotocols.org/2022/3/e34201/
http://dx.doi.org/10.2196/34201
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=35333179&dopt=Abstract
https://mental.jmir.org/2020/10/e21814/
http://dx.doi.org/10.2196/21814
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33031044&dopt=Abstract
https://europepmc.org/abstract/MED/32886123
https://europepmc.org/abstract/MED/32886123
http://dx.doi.org/10.1001/jamanetworkopen.2020.15909
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32886123&dopt=Abstract
https://medinform.jmir.org/2019/4/e15794/
http://dx.doi.org/10.2196/15794
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31674913&dopt=Abstract
http://dx.doi.org/10.1097/YCO.0000000000000611
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32304429&dopt=Abstract
http://dx.doi.org/10.1080/10550490590949433
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=16019976&dopt=Abstract
https://medinform.jmir.org/2019/2/e12239/
http://dx.doi.org/10.2196/12239
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31066697&dopt=Abstract
https://europepmc.org/abstract/MED/35848784
http://dx.doi.org/10.1093/jamia/ocac121
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=35848784&dopt=Abstract
https://dx.plos.org/10.1371/journal.pone.0239761
http://dx.doi.org/10.1371/journal.pone.0239761
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33035229&dopt=Abstract
http://dx.doi.org/10.1111/j.1530-0277.2002.tb02534.x
http://dx.doi.org/10.1016/j.jsat.2006.08.002
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=17306727&dopt=Abstract
https://ctakes.apache.org
https://github.com/Rush-SubstanceUse-AILab/SMART-AI
http://www.w3.org/Style/XSL
http://www.renderx.com/


26. Tran TH, Swoboda H, Perticone K, Ramsey E, Thompson H, Hill K, et al. The substance use intervention team: a
hospital-based intervention and outpatient clinic to improve care for patients with substance use disorders. Am J Health
Syst Pharm 2021 Feb 08;78(4):345-353. [doi: 10.1093/ajhp/zxaa408] [Medline: 33386739]

27. Thompson H, Hill K, Jadhav R, Webb T, Pollack M, Karnik N. The Substance Use Intervention Team: a preliminary
analysis of a population-level strategy to address the opioid crisis at an academic health center. J Addict Med
2019;13(6):460-463 [FREE Full text] [doi: 10.1097/ADM.0000000000000520] [Medline: 31689260]

28. Hyndman RJ, Athanasopoulos G. Forecasting: principles and practice. 2nd ed. Melbourne, Australia: OTexts; 2018. URL:
https://OTexts.com/fpp2 [accessed 2022-12-08]

29. Drummond M, Sculpher MJ, Claxton K, Stoddart GL, Torrance GW. Methods for the Economic Evaluation of Health Care
Programmes. New York, NY: Oxford University Press; 2015.

30. Dunn A, Grosse SD, Zuvekas SH. Adjusting health expenditures for inflation: a review of measures for health services
research in the United States. Health Serv Res 2018 Feb 21;53(1):175-196 [FREE Full text] [doi: 10.1111/1475-6773.12612]
[Medline: 27873305]

31. Cresswell K, Sheikh A. Organizational issues in the implementation and adoption of health information technology
innovations: an interpretative review. Int J Med Inform 2013 May;82(5):e73-e86. [doi: 10.1016/j.ijmedinf.2012.10.007]
[Medline: 23146626]

32. Zhou Q, Chen Z, Cao Y, Peng S. Clinical impact and quality of randomized controlled trials involving interventions
evaluating artificial intelligence prediction tools: a systematic review. NPJ Digit Med 2021 Oct 28;4(1):154 [FREE Full
text] [doi: 10.1038/s41746-021-00524-2] [Medline: 34711955]

33. Smith JR, Hazen EP, Kaminski TA, Wilens TE. Literature review: substance use screening and co-morbidity in medically
hospitalized youth. Gen Hosp Psychiatry 2020 Nov;67:115-126. [doi: 10.1016/j.genhosppsych.2020.10.002] [Medline:
33129136]

34. Peterson C, Li M, Xu L, Mikosz CA, Luo F. Assessment of annual cost of substance use disorder in US hospitals. JAMA
Netw Open 2021 Mar 01;4(3):e210242 [FREE Full text] [doi: 10.1001/jamanetworkopen.2021.0242] [Medline: 33666661]

35. Barocas JA, Savinkina A, Adams J, Jawa R, Weinstein ZM, Samet JH, et al. Clinical impact, costs, and cost-effectiveness
of hospital-based strategies for addressing the US opioid epidemic: a modelling study. Lancet Public Health 2022
Jan;7(1):e56-e64 [FREE Full text] [doi: 10.1016/S2468-2667(21)00248-6] [Medline: 34861189]

36. Marwaha JS, Landman AB, Brat GA, Dunn T, Gordon WJ. Deploying digital health tools within large, complex health
systems: key considerations for adoption and implementation. NPJ Digit Med 2022 Jan 27;5(1):13 [FREE Full text] [doi:
10.1038/s41746-022-00557-1] [Medline: 35087160]

37. Hemming K, Taljaard M. Reflection on modern methods: when is a stepped-wedge cluster randomized trial a good study
design choice? Int J Epidemiol 2020 Jun 01;49(3):1043-1052 [FREE Full text] [doi: 10.1093/ije/dyaa077] [Medline:
32386407]

38. Zhang F, Wagner AK, Ross-Degnan D. Simulation-based power calculation for designing interrupted time series analyses
of health policy interventions. J Clin Epidemiol 2011 Nov;64(11):1252-1261. [doi: 10.1016/j.jclinepi.2011.02.007] [Medline:
21640554]

39. Vasey B, Nagendran M, Campbell B, Clifton DA, Collins GS, Denaxas S, DECIDE-AI expert group. Reporting guideline
for the early stage clinical evaluation of decision support systems driven by artificial intelligence: DECIDE-AI. BMJ 2022
May 18;377:e070904 [FREE Full text] [doi: 10.1136/bmj-2022-070904] [Medline: 35584845]

40. Arnetz BB, Goetz CM, Arnetz JE, Sudan S, vanSchagen J, Piersma K, et al. Enhancing healthcare efficiency to achieve
the Quadruple Aim: an exploratory study. BMC Res Notes 2020 Jul 31;13(1):362 [FREE Full text] [doi:
10.1186/s13104-020-05199-8] [Medline: 32736639]

Abbreviations
ACF: autocorrelation function
AI: artificial intelligence
AIC: Akaike information criterion
AMA: against medical advice
ARIMA: autoregressive integrated moving average
AUDIT: Alcohol Use Disorders Identification Test
BIC: Bayesian information criterion
CDS: Clinical decision support
CNN: convolutional neural network
cTAKES: Clinical Text and Knowledge Extraction System
CUI: Concept Unique Identifier
DAST: Drug Abuse Screening Tool
DSMB: Data Safety Monitoring Board
EHR: electronic health record

JMIR Res Protoc 2022 | vol. 11 | iss. 12 | e42971 | p. 11https://www.researchprotocols.org/2022/12/e42971
(page number not for citation purposes)

Joyce et alJMIR RESEARCH PROTOCOLS

XSL•FO
RenderX

http://dx.doi.org/10.1093/ajhp/zxaa408
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33386739&dopt=Abstract
https://europepmc.org/abstract/MED/31689260
http://dx.doi.org/10.1097/ADM.0000000000000520
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31689260&dopt=Abstract
https://OTexts.com/fpp2
https://europepmc.org/abstract/MED/27873305
http://dx.doi.org/10.1111/1475-6773.12612
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=27873305&dopt=Abstract
http://dx.doi.org/10.1016/j.ijmedinf.2012.10.007
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=23146626&dopt=Abstract
https://doi.org/10.1038/s41746-021-00524-2
https://doi.org/10.1038/s41746-021-00524-2
http://dx.doi.org/10.1038/s41746-021-00524-2
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=34711955&dopt=Abstract
http://dx.doi.org/10.1016/j.genhosppsych.2020.10.002
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33129136&dopt=Abstract
https://europepmc.org/abstract/MED/33666661
http://dx.doi.org/10.1001/jamanetworkopen.2021.0242
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33666661&dopt=Abstract
https://linkinghub.elsevier.com/retrieve/pii/S2468-2667(21)00248-6
http://dx.doi.org/10.1016/S2468-2667(21)00248-6
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=34861189&dopt=Abstract
https://doi.org/10.1038/s41746-022-00557-1
http://dx.doi.org/10.1038/s41746-022-00557-1
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=35087160&dopt=Abstract
https://europepmc.org/abstract/MED/32386407
http://dx.doi.org/10.1093/ije/dyaa077
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32386407&dopt=Abstract
http://dx.doi.org/10.1016/j.jclinepi.2011.02.007
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=21640554&dopt=Abstract
http://www.bmj.com/lookup/pmidlookup?view=long&pmid=35584845
http://dx.doi.org/10.1136/bmj-2022-070904
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=35584845&dopt=Abstract
https://bmcresnotes.biomedcentral.com/articles/10.1186/s13104-020-05199-8
http://dx.doi.org/10.1186/s13104-020-05199-8
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32736639&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/


GLMM: generalized linear mixed effects model
HL7: Health Level Seven
MAT: medication-assisted treatment
NLP: natural language processing
NNE: number needed to evaluate
RUMC: Rush University Medical Center
SBIRT: Screening, Brief Intervention, and Referral to Treatment
SMART-AI: Substance Misuse Algorithm for Referral to Treatment using Artificial Intelligence
SUIT: Substance Use Intervention Team
UMLS: Universal Medical Language System

Edited by A Mavragani; submitted 30.09.22; peer-reviewed by Y Li, D Chrimes; comments to author 15.11.22; revised version received
01.12.22; accepted 05.12.22; published 19.12.22

Please cite as:
Joyce C, Markossian TW, Nikolaides J, Ramsey E, Thompson HM, Rojas JC, Sharma B, Dligach D, Oguss MK, Cooper RS, Afshar
M
The Evaluation of a Clinical Decision Support Tool Using Natural Language Processing to Screen Hospitalized Adults for Unhealthy
Substance Use: Protocol for a Quasi-Experimental Design
JMIR Res Protoc 2022;11(12):e42971
URL: https://www.researchprotocols.org/2022/12/e42971
doi: 10.2196/42971
PMID:

©Cara Joyce, Talar W Markossian, Jenna Nikolaides, Elisabeth Ramsey, Hale M Thompson, Juan C Rojas, Brihat Sharma,
Dmitriy Dligach, Madeline K Oguss, Richard S Cooper, Majid Afshar. Originally published in JMIR Research Protocols
(https://www.researchprotocols.org), 19.12.2022. This is an open-access article distributed under the terms of the Creative
Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work, first published in JMIR Research Protocols, is properly cited. The
complete bibliographic information, a link to the original publication on https://www.researchprotocols.org, as well as this
copyright and license information must be included.

JMIR Res Protoc 2022 | vol. 11 | iss. 12 | e42971 | p. 12https://www.researchprotocols.org/2022/12/e42971
(page number not for citation purposes)

Joyce et alJMIR RESEARCH PROTOCOLS

XSL•FO
RenderX

https://www.researchprotocols.org/2022/12/e42971
http://dx.doi.org/10.2196/42971
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/

