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Abstract

Background: Determining the longer-term health effects of air pollution has been difficult owing to the multitude of potential
confounding variables in the relationship between air pollution and health. Air pollution in many areas of South Asia is seasonal,
with large spikes in particulate matter (PM) concentration occurring in the winter months. This study exploits this seasonal
variation in PM concentration through a natural experiment.

Objective: This project aims to determine the causal effect of PM exposure during pregnancy on pregnancy and child health
outcomes.

Methods: We will use an instrumental variable (IV) design whereby the estimated month of conception is our instrument for
exposure to PM with a diameter less than 2.5 μm (PM2.5) during pregnancy. We will assess the plausibility of our assumption
that timing of conception is exogenous with regard to our outcomes of interest and will adjust for date of monsoon onset to control
for confounding variables related to harvest timing. Our outcomes are 1) birth weight, 2) pregnancy termination resulting in
miscarriage, abortion, or still birth, 3) neonatal death, 4) infant death, and 5) child death. We will use data from the Demographic
and Health Surveys (DHS) conducted in relevant regions of Bangladesh, India, Nepal, and Pakistan, along with monthly gridded
data on PM2.5 concentration (0.1°×0.1° spatial resolution), precipitation data (0.5°×0.5° resolution), temperature data (0.5°×0.5°),
and agricultural land use data (0.1°×0.1° resolution).

Results: Data access to relevant DHSs was granted on June 6, 2021 for India, Nepal, Bangladesh, August 24, 2021 for Pakistan,
and June 19 2022 for the latest DHS from India.

Conclusions: If the assumptions for a causal interpretation of our instrumental variable analysis are met, this analysis will
provide important causal evidence on the maternal and child health effects of PM2.5 exposure during pregnancy. This evidence
is important to inform personal behavior and interventions, such as the adoption of indoor air filtration during pregnancy as well
as environmental and health policy.
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Introduction

South Asia is experiencing some of the highest levels of ambient
air pollution globally. In cross-country comparisons of fine
particulate matter with a diameter less than 2.5 μm (PM2.5),
Bangladesh has emerged as the country with the highest
population-weighted levels, Pakistan has the second highest
levels, India has the third highest levels, and Nepal has the 12th
highest levels [1]. The elevated levels of air pollution and the
large number of exposed people result in significant air
pollution–related mortality and morbidity in South Asia. Overall,
26.2% of all disease-adjusted life years lost to air pollution
globally are estimated to occur in India alone [2]. In 2019, a
total of 980,000 deaths in India, 114,000 deaths in Pakistan,
74,000 deaths in Bangladesh, and 18,000 deaths in Nepal were
attributable to air pollution [3].

Our study focuses on air pollution in the Indo-Gangetic Plain
(IGP), which stretches across Bangladesh, Nepal, India, and
Pakistan. Pollution levels in the IGP are even higher than those
in the study region in general. For instance, in the Indian part
of the IGP, the annual mean PM2.5 concentration is above 100

μg/m3 [2], which is higher than that in India overall (83 μg/m3)
[4], and more than 10-fold the World Health Organization’s

(WHO’s) recommended limit for healthy air (10 μg/m3) [5].
High population density, agricultural and industrial activities,
and dispersal of urban pollution to nearby rural areas, and vice
versa, lead to air pollution being a public health problem in both
urban and rural parts of the IGP. Moreover, rural areas
considerably contribute to pollution levels through local wheat
and rice stubble burning, municipal waste burning, forest fires,
coal-fired factories, and other sources of rural emissions [3,6].
In the peak fire season, the mean relative effects of rural biomass
burning are estimated at 30% of emission levels measured in
Delhi [7]. Substantial mortality and morbidity occur in the IGP,
and the number of air pollution–related deaths is approximately
equally divided between urban and rural areas [3,8].

Annual mean PM2.5 levels disguise substantial seasonal
variation in pollution in the IGP. While the winter months of
October-February are characterized by high pollution reaching

levels of over 150 μg/m3, pollution during the monsoon period

is mostly around 50 μg/m3, and even heavily polluted cities such

as Delhi occasionally record levels below 30 μg/m3 [9,10].

Seasonal variation in PM2.5 levels is particularly salient for the
study of effects of pollution on pregnancy outcomes. Depending
on the month of conception, fetuses experience very different
levels of in utero exposure, which affects birth and child health
outcomes. Moreover, exploiting seasonal variation provides a
potent research design for identifying the causal effects of
prenatal pollution exposure.

By now, it is well established that exposure to increased PM2.5
levels during the prenatal period is associated with a range of
negative child health outcomes. Air pollution has been linked

to preterm birth [11-13], low birth weight [11,14-16], increased
risk of pregnancy loss and stillbirth [13,17], and longer-term
developmental effects such as lower height for age [18,19].

However, the associations between negative child health
outcomes and particulate matter have not been consistent across
the literature. A 2017 systematic review did not find clear
evidence of an association with the risk of preterm birth or term
low birth weight [20], while another recent systematic review
found that PM2.5 levels and low birth weight were associated
in 25 of 29 studies [21]. There is also disagreement regarding
the most critical pregnancy period. Some studies highlight the
importance of the late pregnancy period for birth weight
[11,14,22,23], while other studies found no difference [16,21].

Our study furthers the understanding of PM2.5 on pregnancy
and child health outcomes in South Asia. Our study aims to (1)
determine whether exposure to higher PM2.5 concentrations
during pregnancy reduces the birth weight of the child; (2)
determine whether exposure to higher PM2.5 concentrations
during pregnancy increases the risk of neonatal, infant, and child
death; (3) determine whether exposure to higher PM2.5
concentrations during pregnancy increases the risk of a
pregnancy terminating in a miscarriage, abortion, or still birth;
and (4) understand in which trimesters of pregnancy PM2.5
exposure most strongly reduces birth weight and increases the
risk of neonatal, infant, and child death.

Methods

Data
The primary data set for this observational study is the
Demographic and Health Surveys (DHSs) conducted in
Bangladesh, India, Nepal, and Pakistan [24]. The DHSs are
large, representative, cross-sectional household surveys, which
include questions on topics related to health, nutrition, and
demographics. Households are sampled using probability
sampling based on existing sampling frames, such as a census.
For each of the countries, we include all DHS waves that
collected survey cluster GPS coordinates. This includes the
DHS waves, which took place in Bangladesh in 2004, 2007,
2011, and 2017 to 2018; in India in 2015 to 2016 and 2019 to
2021; in Nepal in 2001, 2006, 2011, and 2016; and in Pakistan
in 2006 to 2007 and 2017 to 2018. We use the women’s module,
which contains information on child births, birth outcomes,
maternal health, and infant mortality. We will match the DHS
data (using the GPS coordinates of the survey cluster locations)
to PM2.5 data to obtain our measure of prenatal pollution
exposure. We will use monthly PM2.5 emissions data from the
Atmospheric Composition Analysis Group at Washington
University, St. Louis, Missouri, United States [25]. Monthly
precipitation and temperature data are obtained from the Climate
Research Unit gridded Time Series monthly high-resolution
gridded multivariate climate data set with a 0.5°×0.5°–gridded
resolution, published by the University of East Anglia’s Climatic
Research Unit, Norwich, United Kingdom. Daily precipitation
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data at 0.5°×0.5°–gridded resolution is provided by the National
Oceanic and Atmospheric Administration/Oceanic and
Atmospheric Research/Earth System Research Laboratories
Physical Sciences Laboratory, Boulder, Colorado, United States
[26]. Crop data at 0.1°×0.1°–gridded resolution are obtained
from the Spatial Production Allocation Model, developed by
the International Food Policy Research Institute, Washington,
DC, United States [27]. We assessed pregnancies having taking
place between January 1998 and December 2019 since this is
the period where gridded monthly air pollution data are
available.

Data Access
Access to the DHS is public but needs to be requested. We
obtained access to the DHS data on June 6, 2021 for India,
Nepal, and Bangladesh and on August 24 for Pakistan.

Ethical Considerations
This research is a secondary data analysis of fully anonymized
data and does not require ethics approval, as per University of
Oxford institutional research ethics policy [28].

Codebook
The DHS codebook (recode manual) provides details on the file
structure, computation of additional variables, and in-depth
descriptions of all variables contained in the data sets [29].

Variables

Creating the Date of Conception and PM2.5 Exposure
Variables
We impute the date of conception for all births within the last
5 years by subtracting the duration of an average pregnancy (40
weeks) from the date of birth reported in the DHS. The
instrumental variable we construct is month of conception, a
factor variable (1-12) indicating the calendar month when the
pregnancy began. We also generate similar variables for each
trimester of the pregnancy, using analogous procedures and
assuming a length of 12.33 weeks (ie, one-third of 40 weeks)
for each trimester.

Prenatal PM2.5 exposure will be computed by matching the
respondents’ cluster’s GPS locations with gridded pollution
data to obtain location-specific estimates of ambient PM2.5
exposure during each pregnancy. The computed measures
include the following:

• Mean PM2.5 exposure during the pregnancy, measured in

units of 10 μg/m3 (weighted)
• Median PM2.5 exposure during the pregnancy, measured

in units of 10 μg/m3 (including also partial months)
• 10th, 25th and 75th, and 90th percentile monthly PM2.5

exposure during pregnancy, measured in units of 10 μg/m3

(including also partial months)
• Maximum monthly PM2.5 exposure during pregnancy,

measured in units of 10 μg/m3 (including also partial
months)

• Cumulative PM2.5 exposure over the whole pregnancy

period, measured in units of 10 μg/m3 (weighted)

• Number of high or low PM2.5 exposure months over the
whole pregnancy period (number of months above or below
mean PM2.5 levels at the respondent’s location, including
partial months)

• Mean PM2.5 exposure over the whole pregnancy period
relative to the annual location-specific average, measured

in units of 10 μg/m3 (weighted)

All exposures with “weighted” in brackets are weighted by the
fraction of the month that the pregnancy covers (between 0 and
1). For median, percentiles, minimum, and maximum exposure
partial months are included.

For each trimester of the pregnancy, the following measures
are computed:

• Mean PM2.5 exposure during each trimester of the

pregnancy, measured in units of 10 μg/m3 (weighted)
• Cumulative PM2.5 exposure over each trimester of the

pregnancy, measured in units of 10 μg/m3 (weighted)
• Number of high or low PM2.5 exposure months over the

whole pregnancy period (number of months above or below
mean PM2.5 levels at the respondent’s location, including
partial months)

• Mean PM2.5 exposure over the whole pregnancy period
relative to the annual location-specific average, measured

in units of 10 μg/m3 (weighted)

Creating the Environmental Covariates
Using gridded temperature and precipitation data, we compute
the mean temperature and precipitation for each trimester of the
pregnancy, the mean over the whole pregnancy, and the mean
over the neonatal period, infancy, and childhood.

We generate a variable for monsoon onset to account for
spatiotemporal variation in weather patterns that could influence
the timing of conception, pollution, and harvest. Using daily
precipitation data and a previously validated method [30], we
generate a year-specific variable (taking values from 1-365 or
1-366 in a leap year), which indicates the date of local monsoon
onset in the year of conception.

Outcome Variables

Birth Weight

The following outcome variables will be considered:

1. Birth weight (in g, m19; primary outcome)
2. Low birth weight (<2500 g, m19; secondary outcome)
3. Very low birth weight (<1500 g, m19; secondary outcome)
4. Extremely low birth weight (<1000 g, m19; secondary

outcome)

Birth weight (in g) is a continuous variable, and the additional
aforementioned birth weight variables (2)-(4) are binary
variables derived from the continuous variable. We generate
binary variables for low, very low, or extremely in the following
way: low birth weight is defined as weight<2500 g, very low
birth weight as weight<1500 g, and extremely low birth weight
as weight<1000 g (according to the WHO’ definition [31]).
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Note that all variables referenced by the short variable name
(m19, etc) are directly from the DHS data set. All other variables
are imputed or are obtained from additional non-DHS data sets.

Miscarriage, Abortion, or Still Birth

The rate of pregnancy termination resulting in miscarriage,
abortion, or still birth per 1000 pregnancies (based on v229,
v230, and v233) is the primary outcome.

Pregnancy termination will be calculated as a rate per 1000
pregnancies (and PM2.5 exposure of these pregnancies will be
computed from the imputed conception date to the point of
pregnancy termination).

Neonatal, Infant, and Child Mortality

The following outcome variables will be considered:

1. Neonatal death rate per 1000 children (age 28 days, b5;
primary outcome)

2. Infant death rate per 1000 children (age 1, b5; primary
outcome)

3. Child death rate per 1000 children (age 5, b5; primary
outcome)

Explanatory Variables and Covariates

Explanatory Variables (PM2.5 Concentration)

The following explanatory variables will be considered:

1. Mean PM2.5 exposure during the pregnancy (weighted)
2. Median PM2.5 exposure during the pregnancy (including

also partial months)
3. 10th, 25th and 75th, and 90th percentile monthly PM2.5

exposure during pregnancy (including also partial months)
4. Maximum monthly PM2.5 exposure during pregnancy

(including also partial months)
5. Cumulative PM2.5 exposure over the whole pregnancy

period (weighted)
6. Number of high or low PM2.5 exposure months over the

whole pregnancy period, including partial months
7. Mean PM2.5 exposure over the whole pregnancy period

relative to the annual location-specific average (weighted)
8. All of the above PM2.5 variables, but computed separately

for each trimester of the pregnancy

PM2.5 exposure is a continuous variable (our instrument) that
is created by using the month of conception to instrument for
the exposure during each trimester or the whole pregnancy (and
controlling for additional covariates described in the analysis
section).

Covariates for the Main Models

Following are the covariates for the main models:

1. Preceding birth interval
2. Birth order (hwidx)
3. Maternal age at birth of the child
4. Sex of the child (b4)
5. Twin birth
6. Mean temperature during the pregnancy or for each

trimester
7. Mean precipitation during the pregnancy or for each

trimester

8. Monsoon onset
9. Percentage of land used for rice cultivation

Preceding birth interval is an unordered factor variable that
indicates the time difference in months between the current and
the previous birth (categories: ≤12 months, >12 and ≤24 months,
>24 and ≤36 months, and >36 months). Birth order is a factor
variable where 1 indicates the most recent birth. Maternal age
provides the age (in years) of the respondent at each of child
birth in the data set. Sex of the child is a binary variable. Twin
birth is a binary variable. Mean temperature and precipitation
are derived from gridded monthly values at the respondent’s
location and averaged over the pregnancy period. Monsoon
onset is a discrete variable (1-365/366) indicating the day of
the year when the monsoon starts. Rice fraction is a continuous
variable (0-1) for the percentage of land used for rice cultivation
at the respondent’s location.

Additional Covariates for Some of the Robustness Checks

The following are additional covariates for robustness checks:

1. Respondent's education level (v106/v133)
2. Wealth index (v190/v191)
3. Respondent's age (v012)
4. Respondent’s height (v438)
5. Altitude (v040)
6. Religion (v130)
7. Ethnicity or caste (v131)
8. Marital status (v501)
9. Region and primary sampling unit (DHSREGNA,

DHSCLUST)
10. Type of cooking fuel used in the household (v161)
11. Total number of children ever born (v201)
12. Antenatal care visit in the first trimester (m13)
13. Received toxoid injections during pregnancy (m1)
14. Took iron tablets or syrup during pregnancy (m45)
15. Took antimalarial drugs (SP/Fansidar or Chloroquine,

m49a-m49b)
16. Husband’s occupation (v705)
17. Smoking (v464)

Education and the wealth indicators are available both as
categorical and continuous variables, age, height (in cm), and
altitude (in m) are continuous. Religion and ethnicity or caste
are factor variables with country-specific levels. Marital status
is a factor variable. Region and primary sampling unit are factor
variables, and cooking fuel is a proxy for indoor air pollution
and is a factor variable indicating the type of fuel used for
cooking inside the house. Number of births is continuous.
Antenatal care visit is a binary variable indicating whether a
care visit took place in the first trimester. The variables for
toxicoid injections, antimalarial drugs, and iron tablets or syrups
are binary variables indicating whether the respondent received
these medicines during pregnancy. Husband’s occupation is a
factor variable with standardized categories across countries.
Smoking is a continuous variable indicating the number of
cigarettes smoked in the last 24 hours by the respondent.

Unit of Analysis
We have restricted our sample to mothers who have children
born within the last 5 years (v208). This is because day of birth
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(hw16) is only recorded for these children, which gives us more
precision for our exposure estimates (we also exclude all births
where the date of birth was missing, except for all children who
died after birth where the date of birth was not recorded). We
further restrict the sample to all mothers with at least 2 births
within the last 5 years to exploit variation in timing of multiple
births from the same mothers. This allows us to control for
observed and unobserved individual differences between
mothers. We also exclude all respondents where de facto and
de jure regions of residency differed.

Statistical Analyses

Data Exclusion
DHS surveys are cleaned by a professional team, and we do not
expect many outliers. In some questions, implausible values are
already flagged in the data; for instance, if the recorded age of
death is a time point after the date of the interview, the value is
flagged in B13. In such instances, we will not include these data
points in our analysis.

Power
We have not assessed statistical power to detect our minimum
effect sizes. We will conclude that the analysis supports our
hypotheses if both the effect sizes are larger than the minimum
effects specified under “effect sizes” below, and the respective
P values are <.05.

Statistical Models
The following is an overview of our analytic strategy:

1. The sample will be restricted to respondents with multiple
births, who reside in the IGP.

2. The IVs (joint estimation of the first and second stage) will
be run: use of the month of conception to instrument for
PM2.5 exposure during pregnancy; use of instrument and
covariates to predict pregnancy and child health outcomes

3. Robustness checks: is the exclusion restriction plausible,
that, after adjusting for all time-invariant confounders at
the level of the mother (through mother-level fixed effects)
as well as temperature and precipitation during the
pregnancy period, the month of conception affects birth
outcomes through no channel other than PM2.5 exposure?

Details of the analysis steps are as follows:

1. We include all respondents in Bangladesh, Nepal, Pakistan,
and India whose survey cluster GPS coordinates fall within
the boundaries of the IGP. The boundaries of the IGP were
obtained from a previous study [32]. We also have restricted
the sample to mothers with multiple births. By exploiting
within-mother variation in the timing of births and using
mother–fixed effects, we can more plausibly account for
(un)observable mother-level factors that may otherwise
confound our estimates.

2. We will estimate our models with an instrumental variables
(IV) estimator using the R package fixest. We will use
interactions of month of conception indicators with regional
fixed effects to instrument for location-specific effects of
month of conception on PM2.5 exposure during pregnancy
(and alternatively each semester of the pregnancy).

Modeling location-specific effects of month of conception
on PM 2.5 exposure is important to satisfy the monotonicity
assumption required of the IV estimator. We have defined
regions on the basis of level 2 administrative boundaries,
and we will check for robustness using other definitions of
regions. We will also control for the date of the monsoon
onset in the year of conception (as well as the interaction
between monsoon onset and the share of rice grown at the
respondents’ location). The second stage of the IV
estimation uses the predicted PM 2.5 values from the first
stage to estimate the effect of PM 2.5 exposure on our
outcomes. Our regression model includes mother fixed
effects, which account for any time-invariant
mother-specific unobservable factors. To account for
aggregate time-varying factors, we will include birth year
fixed effects. Our specification controls for temperature
and precipitation, which are observable factors that may be
correlated with both the month of conception and birth
weight. We also have included birth-level covariates that
correlate with birth outcomes, including preceding birth
interval, birth order, maternal age at the birth of each child,
twin birth, and sex of the child. We have 3 sets of outcomes:
• Birth weight: a continuous variable (primary outcome)

and binary outcomes low, very low, or extremely low
birth weight (secondary outcome).

• Miscarriage, abortion, or still birth: pregnancies
terminating in the first, second, and third trimesters
(we restricted the sample to all women who reported
a pregnancy ending in miscarriage, abortion, or still
birth). These are provided as rates per 1000 births.

• Neonatal, infant, and child mortality: outcomes for
neonatal, infant, and child death. These are provided
as rates per 1000 children.

3. We will use multiple tests to assess the robustness of our
estimates and the plausibility of the exclusion restriction.
To test for differences between subgroups, we will rerun
the main models as follows: (1) by including only urban or
rural respondents (since urban respondents may be less
affected by seasonality, whereas rural respondents’ lifestyle
and nutrition may depend more on agriculture, weather
conditions, etc., v102), (2) by including only households
working in agricultural or nonagricultural professions (since
rural households working in agriculture may experience
more seasonality in their lifestyles than nonagricultural
households, v716), (3) including only wanted or unwanted
pregnancies (v367) since desired and undesired pregnancies
may have different seasonal patterns. We will also run the
models without restricting ourselves to mothers with
multiple births but including all mothers and controlling
for the covariates described above (since we cannot use
mother-level fixed effects in this case). Finally, we also
assess how our estimates change when we use the month
of birth instead of the month of conception as the
instrument.

Variables that violate the assumption of homoscedasticity or of
normality (as determined by a Kolmogorov-Smirnov test) will
be transformed (for instance, using log-transformation). 
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Effect Size
A recent meta-analysis reported that increased pollution is
associated with an 11% increase in median risk for low birth
weight (mainly from US studies) [21]; thus, we would expect
an effect at least as large (since exposure in India is much higher
than that reported in the studies included in the meta-analysis).
For low birth weight, we have not identified such a clear
minimum expected value from previous studies, but we expect
significant reductions in birth weight. For infant mortality, a
summary of studies from developed and developing countries
reports increases in mortality ranging from 10%-35% per 10

μg/m3 increase in PM2.5 concentration [12]. The lower bound
of their confidence interval is 5%, which is the minimum effect
size of interest for us.

Reliability and Robustness Testing
We will use different PM2.5 concentration measures described
above to assess robustness of our findings. Since the incidence
of preterm births is positively associated with pollution (but we
do not know which births are preterm), we can assess the
reliability of our results to assuming a more conservative,
imputed pregnancy duration of <40 weeks for all pregnancies.
We will draw upon regional statistics on gestational length when
doing so. We may also include different constructs for
measuring pollution—for example, fire counts from satellite
data—to evaluate the robustness to an alternative way of
capturing pollution exposure.

Results

Data cleaning and processing have been completed. This study
has also been preregistered in the Open Science Foundation
registries (registration digital object identifier
10.17605/OSF.IO/TBQFH). Data analysis began in August
2021.

Discussion

Principal Findings
Our study will test the hypothesis that exposure to higher
concentrations of PM2.5 during pregnancy reduces the birth
weight of the child, and that exposure to high concentrations
during pregnancy increases the risk of neonatal, infant, and child
death as well as the risk of a pregnancy terminating in a
miscarriage, abortion, or still birth. We will also investigate
during which trimester the negative effects of PM2.5 (if any)
on pregnancy outcomes are most pronounced.

Strengths and Limitations
This study makes several contributions to the literature. First,
we draw upon a novel data set with globally consistent monthly
PM2.5 concentrations. The unavailability of such monthly
resolved PM2.5 data sets for the IGP has thus far been an
impediment to the study of health effects over the entire area.
Second, while other studies have investigated effects of more
short-term exposures, such as wildfires [14,33] whose duration
is often in the order of days, high seasonal pollution levels in
the IGP enable us to study a population with high exposures
over multiple months. Third, if we can show that timing of birth

affects pregnancy and child health outcomes through no channel
other than PM2.5 exposure (after controlling for observable
factors that could intervene in this relationship), we can interpret
our findings as having causal meaning. To make this assumption
plausible, we account for individual-level confounders by
focusing our analysis on within-mother variation in the timing
of birth and by comparing the outcomes of children born to the
same mother but in different months of the year. We also
account for time-varying, seasonal factors such as temperature,
precipitation, and local monsoon onset.

We are aware of several factors that may limit the validity of
our results. First, while we can carefully control for
individual-level factors and time-varying seasonal factors we
cannot exclude with certainty that our instrument (month of
conception) does not influence our outcome variables through
channels other than PM2.5 exposure. Second, PM2.5 exposure
is variable across small geographic scales, which we cannot
capture. Besides ambient air pollution, respondents may also
experience indoor air pollution, which is a second important
pollution source, which we cannot directly measure. However,
we control for household-level factors to account for unobserved
household-level confounders. Exposure measurement in our
study is thus limited both by the scale of the PM2.5 data as well
as the systematic random displacement of GPS coordinates in
the DHS survey (used to deidentify respondent’s locations).
Third, we infer the month of conception based on the duration
of an average pregnancy (40 weeks). However, we do not know
the actual length of the pregnancy periods of our respondents,
which may lead to incorrect estimation of PM2.5 exposure of
the individual pregnancies. Since pollution is associated with
shorter gestational period, our estimates of PM2.5 exposure are
likely to be upward biased and may misclassify the trimester
during which the exposure occurred. We seek to address this
bias by making more conservative assumptions for an average
pregnancy duration. Fourth, we cannot distinguish between
preterm and term births owing to unknown length of the
gestational period. Thus, we are unable to disentangle the
mechanism underlying low birth weight. Low birth weight at
term could be the result of PM2.5 exposure. Alternatively,
PM2.5 may increase the risk of premature birth, which, on
average, results in lower birth weight [34].

Practical Significance
Air pollution is a major contributor to the global disease burden.
While deaths due to indoor air pollution have been declining
[35], ambient air pollution has become the fifth leading global
cause of death in 2015. It is the second leading cause in India,
fourth leading cause in Pakistan, and fifth leading cause in
Bangladesh [36]. In the countries included in our study,
population-weighted pollution levels have increased in recent
years, which indicates a need to address this growing public
health problem. Studies on the effects of postnatal PM2.5
exposure may not account for the fact that the same populations
often already experience prenatal exposure. Our study
contributes to the understanding of negative health effects of
prenatal exposure and is able to disentangle the effects of
prenatal exposure from the effects of postnatal exposure. By
doing so, the study seeks to draw attention specifically to the
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effects of pollution during pregnancy and to raise awareness of
potential negative pregnancy and child health outcomes.

Future Directions
Future work should expand this study’s approach and investigate
the effect of PM2.5 on pregnancy outcomes in regions other
than South Asia. The use of natural experiments, such as
seasonal variation in PM2.5 or discontinuities in exposure on
small spatial scales, could allow researchers to provide evidence

on the causal effects of PM2.5 during pregnancy in different
contexts, countries, and regions. In addition, future work would
benefit from the availability of more reliable measures of
gestational length to obtain precise measures of length of
exposure. Finally, remotely sensed PM2.5 data, which are
spatially and temporally more granular and incorporate
high-resolution ground measurements or measurements from
wearable sensors, could provide more accurate data on
respondents’ actual exposure.
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