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Abstract

Background: The number of people with cognitive deficits and diseases, such as stroke, dementia, or attention-deficit/hyperactivity
disorder, is rising due to an aging, or in the case of attention-deficit/hyperactivity disorder, a growing population. Neurofeedback
training using brain-computer interfaces is emerging as a means of easy-to-use and noninvasive cognitive training and rehabilitation.
A novel application of neurofeedback training using a P300-based brain-computer interface has previously shown potential to
improve attention in healthy adults.

Objective: This study aims to accelerate attention training using iterative learning control to optimize the task difficulty in an
adaptive P300 speller task. Furthermore, we hope to replicate the results of a previous study using a P300 speller for attention
training, as a benchmark comparison. In addition, the effectiveness of personalizing the task difficulty during training will be
compared to a nonpersonalized task difficulty adaptation.

Methods: In this single-blind, parallel, 3-arm randomized controlled trial, 45 healthy adults will be recruited and randomly
assigned to the experimental group or 1 of 2 control groups. This study involves a single training session, where participants
receive neurofeedback training through a P300 speller task. During this training, the task’s difficulty is progressively increased,
which makes it more difficult for the participants to maintain their performance. This encourages the participants to improve their
focus. Task difficulty is either adapted based on the participants’ performance (in the experimental group and control group 1)
or chosen randomly (in control group 2). Changes in brain patterns before and after training will be analyzed to study the
effectiveness of the different approaches. Participants will complete a random dot motion task before and after the training so
that any transfer effects of the training to other cognitive tasks can be evaluated. Questionnaires will be used to estimate the
participants’ fatigue and compare the perceived workload of the training between groups.

Results: This study has been approved by the Maynooth University Ethics Committee (BSRESC-2022-2474456) and is registered
on ClinicalTrials.gov (NCT05576649). Participant recruitment and data collection began in October 2022, and we expect to
publish the results in 2023.

Conclusions: This study aims to accelerate attention training using iterative learning control in an adaptive P300 speller task,
making it a more attractive training option for individuals with cognitive deficits due to its ease of use and speed. The successful
replication of the results from the previous study, which used a P300 speller for attention training, would provide further evidence
to support the effectiveness of this training tool.

Trial Registration: ClinicalTrials.gov NCT05576649; https://clinicaltrials.gov/ct2/show/NCT05576649

International Registered Report Identifier (IRRID): DERR1-10.2196/46135

(JMIR Res Protoc 2023;12:e46135) doi: 10.2196/46135

JMIR Res Protoc 2023 | vol. 12 | e46135 | p. 1https://www.researchprotocols.org/2023/1/e46135
(page number not for citation purposes)

Noble et alJMIR RESEARCH PROTOCOLS

XSL•FO
RenderX

mailto:sandracarina.noble.2017@mumail.ie
http://dx.doi.org/10.2196/46135
http://www.w3.org/Style/XSL
http://www.renderx.com/


KEYWORDS

ADHD; attention; BCI; brain-computer interface; cognitive deficit; cognitive disease; cognitive training; dementia; EEG;
electroencephalography; ERP; event-related potential; neurodegeneration; neurofeedback training; P300 speller; stroke

Introduction

Background
Cognition includes many facets of complex processing
functions, such as, and not limited to, attention, the acquirement
of knowledge, memory, decision-making, and comprehension
[1]. Cognitive deficits often present as symptoms in many
underlying neurological disorders.

In the aging population, cognitive decline is common, however,
can be accelerated by neurodegenerative diseases, such as
dementia, or through brain trauma and stroke. Furthermore, the
increased prevalence of cognitive deficits is apparent in every
age demographic. As a result of the COVID-19 pandemic, many
long-term neurological effects have been identified in patients
who have experienced COVID-19 infection. In a study published
by Hartung et al [2], it was identified that of a sample group of
969 patients, approximately 26% of patients experience mild
cognitive impairment in the aftermath of the infection. Other
cognitive diseases, such as attention-deficit/hyperactivity
disorder (ADHD) and autism spectrum disorder, are common
neurocognitive disorders that are identified in children. All these
diseases feature a profound effect on the quality of life of the
individual because of impairments in cognition [3-5].

The common treatments for these conditions are
pharmacological interventions or therapeutic interventions.
However, these disorders have no known cure, and rather,
treatments are created to alleviate the symptoms of the disorder.

Pharmacological interventions, such as the use of
psychostimulant medicines, have been rendered highly effective
in treating symptoms of cognitive deficits. However, they have
been criticized for the adverse effects which can occur due to
their use [6]. Methylphenidate and lisdexamfetamine are 2
common psychostimulants used in the treatment of a variety of
cognitive disorders, including ADHD. Both stimulants have
shown to be efficacious in the treatment of the symptoms
associated with the disorder but can result in insomnia,
decreased appetite, headaches, and abdominal pain [7].

Cognitive disorders and their interventions, both
pharmacological and nonpharmacological, can be highly costly,
not only for the individual but also for health care systems
globally [8,9]. This can cause great distress for individuals, as
diagnosis and treatment for cognitive disorders can become
inaccessible, as well as immense pressure on health care systems
due to the increasing burden of these diseases. For these reasons,
there is a clear need for low-cost and effective treatments for
neurocognitive disorders.

Neurofeedback Training
Electroencephalographic neurofeedback (EEG-NFB) is a type
of brain-computer interface (BCI), which provides real-time
feedback to the individual based on neural signals of interest
as measured by electroencephalography (EEG), thus training

the individual to self-regulate their brain activity [10]. EEG-NFB
was introduced in the 1960s independently by Nowlis and
Kamiya [11], and Sterman et al [12], and was commonly
referred to as EEG biofeedback. Nowlis and Kamiya [11]
presented data to confirm that patients could control their brain
activity as a result of engaging with rewards using an EEG
measuring device. Sterman et al [12] discovered through training
cats that they too could modulate brain wave activity. As a result
of these discoveries, a variety of treatments have been developed
to alleviate symptoms of many cognitive disorders, including
ADHD, schizophrenia, and many others [13-15].

Due to criticism relating to the efficacy of EEG-NFB in the
1970s, there was a decline in research on the use of EEG-NFB
[16]. However, in recent years there has been a reemergence of
the use of EEG-NFB globally in many research and clinical
settings [10].

One example of a novel EEG-NFB is the adaptive P300 speller
for attention training by Arvaneh et al [17]. The P300 speller
was first introduced by Farwell and Donchin [18] in 1988 as a
tool for patients who could not communicate, such as in the
case of patients who have “locked-in” syndrome. In the speller,
a matrix of symbols (eg, letters and numbers) is presented to
the user. Each row and column in the matrix of symbols is
highlighted or flashed in random order. When the user only
focuses on the flashes of a target symbol and ignores the other
flashes, the BCI can select this target symbol by identifying the
row and column that elicited a P300 wave, thus allowing the
user to spell words with their mind. In this process, each row
and column are flashed several times, so that the signal-to-noise
ratio (SNR) of the EEG signals can be increased by averaging.
Usually, this number of flashes per row and column is fixed to
allow the user to spell words sufficiently well in an acceptable
amount of time. However, Arvaneh et al [17] progressively
reduced the number of flashes in a training session based on
the user’s performance to intentionally decrease the SNR. This
makes it more difficult for the user to spell words correctly,
thus encouraging them to improve their focus in order to
maintain their performance. The researchers demonstrated that
a single training session on healthy adults resulted in an increase
in performance in a cognitive task, as well as an enhancement
of event-related potentials (ERPs) [17].

This study intends to replicate the experiment by Arvaneh et al
[17], comparing their adaptation of the number of flashes to a
novel adaptation approach based on iterative learning control
(ILC).

Framework of ILC
ILC is a type of control engineering that was introduced by
Ukiyama [19] in the late 1970s and Arimoto et al [20] in the
1980s. ILC is applied to repetitive processes, where the same
tracking task is repeated several times. Examples of traditional
application areas of ILC are the control of pick-and-place
industrial robots or semiconductor manufacturing [21]. ILC
exploits the repetitiveness of processes such as these by learning
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from past experiences, thus reducing the tracking error over
time, as well as adapting to small changes in the processes. An
iterative learning controller is able to learn from past experiences
by taking the control input and error of previous iterations into
account when determining the control input for the next
iteration. The typical framework for ILC is

uk+1(∙)=f(ek+1(∙),…,ek–s(∙),uk(∙),…,uk–r(∙)), (1)

where k is the iteration index, u is the control input, and e is the
tracking error. There are different ways to determine the function
f in (1). The simplest ILC algorithm is Arimoto et al’s [20]
algorithm, where the next control input is equal to the control
input plus the scaled error of the previous iteration, that is,

uk+1(t)=uk(t)+γek(t+1), (2)

where t is discrete time, and γ is a scalar controller parameter.
ILC algorithms generally take the form

uk+1(t)=uk(t)+Kek(t+1), (3)

where K is the so-called learning-gain operator, which is often
based on a model of the system, such as the inverse-model ILC
algorithm [22] or the Adjoint algorithm [23]. The algorithms
described in (2) and (3) are so-called P-type ILC algorithms as
they use the error from previous iterations. Algorithms that use
the derivative of the error instead are known as D-type ILC
[24].

While ILC was mostly used in industrial and manufacturing
processes in its early days, it has found popularity in other
application areas, such as stroke rehabilitation [23] or the control
of exoskeletons [25] in more recent years.

Since rehabilitation and training, whether physical or cognitive,
are inherently repetitive processes, where the task difficulty
needs to change progressively, this application area lends itself
nicely to the use of ILC.

Objectives
The primary objective of this study is to accelerate P300-based
attention training by progressively and optimally adjusting the
task difficulty in a training session to each individual using ILC.
The proposed iterative learning controller, which determines
the task difficulty based on previous performance and task
difficulty level, will be compared to the adaptation algorithm
used in a previous study by Arvaneh et al [17]. Thus, we will
be able to analyze the replicability of Arvaneh et al’s [17] study.
A random task difficulty control group will also be used in this
study to compare the training effects of personalized approaches
with the training effects due to exposure to a range of
nonpersonalized task difficulty levels.

While we expect the cognitive enhancements achieved during
the training session to be similar among the groups, we expect
the experimental group, where the task difficulty is determined
by an iterative learning controller, to complete the training
session more quickly than the other groups.

Methods

Study Design
In this single-blind, 3-arm randomized controlled trial with
parallel-arm design, the effectiveness of different task difficulty
adaptation approaches in a P300 speller task will be evaluated
and compared. The study involves a single experimental session
that lasts no longer than 2 hours (including setup). The
experiments will be conducted in an electrically shielded, dark,
and quiet room on the Maynooth University campus.

Recruitment
The participants for this study will be recruited from the staff
and student community of Maynooth University through an
open enrollment process. Study participants will be alerted to
the study through advertisement flyers distributed throughout
the Maynooth University campus and through email
advertisements sent to staff and students.

Participants
The participants will be healthy individuals aged 18 years or
older with no self-reported history of neurological or cognitive
illness, and normal or corrected-to-normal vision. Interested
participants who do not meet these criteria, have a negative
reaction to the electroconductive gel, or who are illiterate will
be excluded from the study.

Based on previous work using a P300-based BCI for attention
training [17,26], a sample size of 45 participants (15 per group)
was determined. Participant recruitment will continue until the
sample size is reached. It is expected that around 50 participants
will be recruited due to a 10% dropout rate.

Ethical Considerations
This study was approved by the Maynooth University Ethics
Committee (BSRESC-2022-2474456) and is registered on
ClinicalTrials (NCT05576649). Interested participants who
meet the eligibility criteria and give informed consent to study
participation, allowing the recording of their performance in
the training session and their brain signals, as well as the use
of the collected data for this study and future research, will be
invited to conduct a patch test to mitigate the risk of allergic
reactions to the electroconductive gel. Participants will be
advised that they have the freedom to withdraw from the
experiment at their discretion at any time throughout the course
of the experiment and will not be compensated for their
participation in the study. The data from this study will be
irreversibly anonymized immediately upon collection.

Procedure
The experimental procedure of this study is based on previous
work by Arvaneh et al [17]. An overview of the procedure can
be found in Figure 1.

Participants will be asked to fill in a questionnaire at the
beginning and end of the experiment. They will then complete
a continuous random dot motion (RDM) task, which will serve
as a baseline for their cognitive abilities. Afterward, participants
will receive attention training using a P300 speller task, where
the task difficulty in each run of the speller is either chosen
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randomly (control group 2) or adjusted to the participant’s
performance (control group 1 and experimental group). To

analyze improvements in cognitive abilities, participants are
asked to complete the RDM task again after the training.

Figure 1. Study procedure based on Arvaneh et al [17]. ILC: iterative learning control.

EEG Data Acquisition
Participants’EEG data will be recorded during the P300 speller
training phase of the experiment. EEG data will be collected
using the battery-operated ANT Neuro eego rt [27] with a
32-channel waveguard cap [28]. The sintered silver–silver
chloride electrodes are located in standard 10-20 positions.
Impedances will be maintained below 5 kΩ during recording.

The EEG signals will be acquired in the OpenViBE software
[29] at a sampling rate of 500 Hz. All channels will be band-pass
filtered (1-20 Hz) and down-sampled by a factor of 4 before
further processing.

Offline analysis of the EEG data will be carried out in MATLAB
[30] using the EEGLAB toolbox [31]. Since this study is a
replication of Arvaneh et al’s [17] study, the following offline
analysis steps closely follow the steps described in the study.
The continuous EEG signals will be rereferenced to Fz,
band-pass filtered between 0.5 and 35 Hz and separated into
baseline-corrected epochs of 150 milliseconds before the
stimulus to 550 milliseconds post stimulus, where the 150
milliseconds prestimulus period is used as the baseline. Epochs

with an amplitude of more than 75 µV or those with a voltage
step of more than 150 µV within a 200-millisecond window
will be excluded from analysis.

Tasks and Stimuli

Questionnaire
Participants will be asked to complete the same 10-point Likert
scale questionnaire as in Arvaneh et al [17]. It consists of the
four questions: (1) How tired are you now? (2) How alert do
you feel? (3) How bored do you feel? (4) Do your eyes feel
tired?

This questionnaire will be completed at the beginning and end
of the experiment so that responses before and after training
can be compared.

In addition, the NASA Task Load Index will be used at the end
of the experiment to assess participants’ perceived workload of
the training [32].

RDM Task
The continuous RDM task is based on Arvaneh et al [17] and
Kelly and O’Connell [33]. In this task, the participants will
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focus on moving dots on the screen, which transition from
incoherent motion to coherent motion. During incoherent
motion, all dots will continuously move in random directions,
whereas in coherent motion, a significant fraction of the dots
will move in one direction, either left or right. The participants
will be asked to indicate the direction of the coherent motion
by pressing the left or right arrow key once they are sure of the
motion direction. In both the pre- and posttraining phases, the
main task consists of 40 trials, where the coherence level, that
is, the fraction of coherently moving dots, and the motion
direction vary in each trial.

An average of 118 dots, with a size of 6×6 pixels each, are
displayed in a circular aperture of 5° at a viewing distance of
70 cm, resulting in a dot density of approximately 10.8%. Each
dot is black against a grey background. The dots are moving at
a speed of 3.33°/second. The incoherent motion lasts for either
3.1, 4.2, or 5.7 seconds, and the coherent motion always lasts
for 1.9 seconds. The coherence level is either 19% or 25%.

To allow participants to understand the task, a practice session
will be carried out before the pretraining phase. The practice
session consists of 3 blocks of 6 trials each. In the first block,
the coherence levels are either 60% or 80%, reducing to 30%
or 40% in the second block, and finally reaching 20% or 25%
in the last block of the practice session. All other parameters of
the task are the same as above. During the practice session,
participants will receive verbal feedback on hits, misses, and
false alarms.

The code for this task was developed in-house using PsychoPy
[34] and the stimuli are presented on a 52.7-cm-wide LED

monitor with a refresh rate of 60 Hz and a resolution of
1920×1080 pixels.

P300 Speller Task

Overview

In this study, the P300 speller implementation in OpenViBE
[29] is used. This P300 speller uses the xDAWN algorithm [35]
to train a spatial filter that enhances the SNR of the P300 ERPs.
This reduces the 32 EEG channels to 3 components, which are
weighted combinations of all channels. A linear discriminant
analysis classifier is used to distinguish target and nontarget
trials. It should be noted that the row and column with the
highest probability of belonging to the target class are chosen,
even if that is below 50%. Both the spatial filter and classifier
are trained for each participant using calibration data.

Figure 2 shows the 6 by 6 grid of letters and numbers that is
displayed on the screen. The word to be copy-spelled and the
identified symbols can be seen below the grid. If the identified
symbol is the same as the target symbol, it will be displayed in
green. If the identified symbol is in the same row or column as
the target symbol, it will be displayed in orange and if it is
wrong, it will be displayed in red.

Outside of the training phase, 12 flashes per row and column
are used. Each flash lasts 55 milliseconds with an interflash
interval of 117 milliseconds. Each target symbol is highlighted
in blue for 6 seconds before the flashing begins.

In each run after the calibration phase, the spelling accuracy,
that is, the fraction of symbols that were identified correctly, is
calculated for all numbers of flashes between 1 and the actual
number of flashes used.

Figure 2. OpenViBE [29] implementation of the P300 speller. The next target letter in the word “dog,” “o,” is currently highlighted in blue. The
previous letter, “d,” was correctly identified by the speller and is therefore highlighted in grey. The target symbols are displayed below the grid of letters
and numbers (“Target:”), and the previously identified symbols can be seen below the target (“Result:”).
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Calibration Phase

The calibration phase is used to collect training data for the
spatial filter and classifier. The participants will complete 2
runs, where the words “the” and “quick” are copy-spelled
without feedback. The recorded EEG signals from both runs
are concatenated and then used to first train the xDAWN spatial
filter before the linear discriminant analysis classifier is trained.
Both target and nontarget trials are separated into epochs ranging
from stimulus onset to 600 milliseconds poststimulus. The
spatial filter is trained using the continuous EEG signals as well
as the target epochs, whereas the classifier uses target and
nontarget epochs for training.

Evaluation Phase

Once the spatial filter and classifier are trained, the participants
will copy-spell the word “dog.” If at least 2 of the 3 letters are
correctly identified by the P300 speller, the participant will
move on to the training phase. Otherwise, the spatial filter and
classifier will be retrained with the added EEG signals from the
latest run. They will then copy-spell the word “fox.” If only 1
of the 3 letters is identified correctly, the participant will be
removed from the study.

Training Phase

During the training phase, all participants will copy-spell the
word “beautiful” for 5 runs. Ten flashes per row and column
are used for the first run of the training phase, for all groups.
The number of flashes in all subsequent runs is adapted
randomly (control group 2) or based on the participants’
performance in the previous run (control group 1 and
experimental group). The participants in all groups will receive
feedback but will not be told why the number of flashes varies
in each run.

The details of the task difficulty adaptation for each group are
described below:

Control group 1: The adaptation algorithm in control group 1
is a replication of the work described in [17]. The number of
flashes in each run, Ni, is the average of the minimum number
of flashes needed to reach more than 66% spelling accuracy in
the previous run, referred to as N(i–1)66, and the actual number
of flashes used in the previous run, Ni–1, that is,

where Ni is rounded to the nearest integer. If the spelling
accuracy in the previous run was below 66%, then the number
of flashes in the next run is increased by 1, that is,

Ni=Ni–1 + 1. (5)

Control group 2: The task difficulty adaptation of control group
2 is not based on the participants’ performance. Instead, the
number of flashes in each run is chosen at random between 1
and 10 flashes. Choosing the number of flashes in this way will
expose the participants in control group 2 to varying task
difficulties in an unpredictable way. This allows the authors to
compare the personalized adaptation approaches of the other 2
groups to a nonadaptive difficulty adjustment approach under
similar conditions. Using a constant task difficulty in this group
would potentially lead to differences due to an easier average
task difficulty [36] and reducing the number of flashes by the
same amount each run would introduce predictability, which
the other groups do not have.

Experimental group: In the experimental group, a P-type ILC
controller is used to adapt the number of flashes in the next run,
Ni, based on the number of flashes and error in the previous run,
Ni–1 and ei–1=1-J1( i–1) (where J1 is the spelling accuracy). The
update law of the controller is

Ni=Ni–1+ f(ei–1), (6)

where ε is a controller parameter and

f(ei–1)=2ei–1–1. (7)

Figure 3 shows f(ei–1) against ei–1. As can be seen, if only half
of all symbols in the previous run were identified correctly, that
is, 50% error, f(ei–1) will be 0, which means that the number of
flashes in the next run will remain the same as that in the
previous run. f(ei–1) will be –1, if all symbols were identified
correctly, and1 if no symbols were identified correctly. This
means that the controller parameter   is the maximum update
step of the number of flashes from one run to the next. ε was
tuned in simulation and pilot experiments to the following:

The update law described in (6), (7), and (8) can therefore be
simplified to

Ni=Ni–1(ei–1+0.5). (9)

The new number of flashes, Ni, is then rounded up to the next
highest integer.
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Figure 3. The function of the error in the previous run, f(ei–1), used in the P-type ILC update law, plotted against the error in the previous run, ei–1.

Posttraining Phase

After the training phase, which differs for each group and
individual, the participants in all groups will copy-spell the
word “dance” with 12 flashes per row and column. This is done
to compare any posttraining differences between the groups.

Data Analysis
The offline data analysis steps closely follow the steps described
by Arvaneh et al [17] to allow for comparability of results.

Questionnaire
The answers to Arvaneh et al’s [17] questionnaire will be
analyzed for between-group and within-group differences, using
statistical tests, such as repeated measures ANOVA and paired
t tests.

Similarly, between-group differences in responses to the NASA
Task Load Index questionnaire [32] will be analyzed, for
example, using a 1-way ANOVA. The raw score of each
question will be used for the data analysis.

RDM Task
The change in performance in the RDM task between pre- and
posttraining phases will be analyzed in terms of accuracy and
response time. The accuracy is the number of correct trials over
the total number of trials, and the response time is the elapsed
time between onset of the coherent motion until the correct
button is pressed before the end of the coherent motion. The
response time of incorrect trials will not be considered. The
mean response time will be calculated for each participant
individually. Statistical tests, such as ANOVA and paired t tests,
will be conducted to analyze between-group and within-group
differences for both the accuracies and mean response times.

P300 Speller Task

Spelling Accuracy

The between-group differences in performance in the P300
speller in terms of spelling accuracy will be analyzed for all
participants. Only the evaluation run, the first run of the training

phase, and the posttraining run will be considered, as these 3
runs use the same number of flashes per row and column for
all participants. Training runs 2-5 are different for each
individual as the number of flashes is either determined by their
previous performance (control group 1 and experimental group)
or chosen randomly (control group 2). This means that the
performance during these runs cannot be compared directly.

Length of Training

Since 1 of the objectives of this study is to accelerate attention
training, the length of the training will be compared in terms of
the total number of flashes used in runs 2-5 of the training phase.
A statistical test, such as the 1-way ANOVA, will be carried
out to compare between-group differences.

ERP Components

The changes in the ERP components throughout the training
will be analyzed. For this purpose, epochs from 150 milliseconds
to 550 milliseconds poststimulus onset will be extracted from
the EEG data for both target and nontarget trials. Subsequently,
the total power across the same centroparietal electrodes as used
in [17] (ie, C3, Cz, C4, P3, Pz, and P4) will be calculated for
each epoch.

The average total power for all epochs of the calibration and
evaluation phases, the training phase, and the after-training
phase, respectively, will be calculated. A training-to-calibration
ratio of the average power for both target and nontarget trials
will be obtained by dividing the average total power during the
training phase by the average total power during the calibration
and evaluation phases. The same will be done with the average
total power during the after-training phase to obtain an
after-training-to-calibration ratio.

A ratio of greater than unity indicates an increase in average
total power, whereas a ratio of less than unity indicates a
decrease in average total power compared to the calibration and
evaluation phase. For target trials, an increase in power means
that the participant improved their attention, and a decrease in
power of nontarget trials can be interpreted as the participant
being less distracted by nontarget flashes [17].

JMIR Res Protoc 2023 | vol. 12 | e46135 | p. 7https://www.researchprotocols.org/2023/1/e46135
(page number not for citation purposes)

Noble et alJMIR RESEARCH PROTOCOLS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Appropriate statistical tests, such as ANOVA, will be conducted
to analyze within-group and between-group differences in the
aforementioned ratios.

Time-Frequency Analysis

Similarly, to the training-to-calibration and
after-training-to-calibration ratios of the average total power,
these ratios will be calculated for the power of the alpha rhythm
(7-12 Hz) of nontarget trials that are not presented immediately
after a target trial. The alpha power will be calculated for the
same centroparietal electrodes as before, for a period of 150
milliseconds poststimulus.

The training-to-calibration alpha ratio is the average alpha power
during the training phase divided by the average alpha power
during the calibration and evaluation stages, and the
after-training-to-calibration alpha ratio is the average alpha
power during the after-training phase divided by the average
alpha power during the calibration and evaluation stages. A
ratio of less than unity means that a participant is less distracted
by nontarget stimuli compared to the calibration and evaluation
phases [17].

Between-group differences of the training-to-calibration and
after-training-to-calibration alpha ratios will be analyzed using
statistical tests, such as 1-way ANOVA.

Correlation Between EEG and RDM Performance

The potential correlation between the brain activity during the
P300 speller phase of the training session and the performance
in the RDM task will be investigated with tests, such as the
Pearson correlation coefficient or the nonparametric Spearman
correlation test. The training-to-calibration and
after-training-to-calibration ratios of total power and alpha
power will be used as performance metrics during the P300
speller task. Similar ratios will be obtained for the response
times and accuracies of the RDM task by dividing the
posttraining phase response times and accuracies by the
pretraining phase response times and accuracies, respectively.

Results

This study was approved by the Maynooth University Ethics
Committee (BSRESC-2022-2474456) and is registered on
ClinicalTrials.gov (NCT05576649). Participant recruitment and
data collection began in October 2022. We expect to publish
the results in 2023. This study is replicating the experimental
protocol of Arvaneh et al [17], comparing their task difficulty
adaptation approach to a novel approach using an iterative
learning controller, as well as random task difficulty levels in
each run.

Arvaneh et al [17] showed a significant enhancement of ERP
components and performance in the RDM task after the P300
speller training, suggesting that participants’attention improved.
We expect such an improvement for all groups in this study,
with changes in the length of the training between groups due
to the different adaptation approaches.

Discussion

Overview
This study aims to evaluate the use of an adaptive P300 speller
as a neurofeedback training tool for attention training. We aim
to accelerate the training process using ILC and compare
personalized and nonpersonalized task difficulty adaptation
approaches. By replicating the experimental protocol of Arvaneh
et al [17], who demonstrated the adaptive P300 speller’s
potential as an easy-to-use and effective neurofeedback training
tool, we seek to gather further evidence supporting this
application for attention training.

The findings of this study will contribute to the understanding
of how different adaptation approaches, both personalized and
nonpersonalized, can impact the efficacy of neurofeedback
training tools. These insights can guide the design of future
BCI-based cognitive training and rehabilitation interventions.
Accelerating the training with the P300 speller, without affecting
its effectiveness or the users’ frustration levels, will make it a
more attractive training option for people with cognitive deficits.

Limitations
There are limitations to this protocol. The participants will only
receive a single session of the neurofeedback training and
therefore the long-term impacts of the neurofeedback training
will not be obtained. Due to the short length of the training
session, participants may not experience significant cognitive
enhancements. The participants for this study will be healthy,
and most likely young (due to recruitment in the university
community) adults. It can be assumed that these individuals
possess close to maximal cognitive abilities, which further limits
the significance of the cognitive enhancements of the training.

Conclusions
Due to an aging and growing population, the number of people
with cognitive deficits and illnesses is rising. It is therefore
important to develop cognitive training and rehabilitation tools
that are affordable, easy to use, and effective. The adaptive P300
speller that will be evaluated in this study might have the
potential to be an efficient training tool. Positive findings of
this study may demonstrate that the adaptive P300 speller, and
more broadly BCIs, can be effective tools in cognitive training
and rehabilitation.
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