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Abstract

Background: Binge eating (BE), characterized by eating a large amount of food accompanied by a sense of loss of control over
eating, is a public health crisis. Negative affect is a well-established antecedent for BE. The affect regulation model of BE posits
that elevated negative affect increases momentary risk for BE, as engaging in BE alleviates negative affect and reinforces the
behavior. The eating disorder field’s capacity to identify moments of elevated negative affect, and thus BE risk, has exclusively
relied on ecological momentary assessment (EMA). EMA involves the completion of surveys in real time on one’s smartphone
to report behavioral, cognitive, and emotional symptoms throughout the day. Although EMA provides ecologically valid
information, EMA surveys are often delivered only 5-6 times per day, involve self-report of affect intensity only, and are unable
to assess affect-related physiological arousal. Wearable, psychophysiological sensors that measure markers of affect arousal
including heart rate, heart rate variability, and electrodermal activity may augment EMA surveys to improve accurate real-time
prediction of BE. These sensors can objectively and continuously measure biomarkers of nervous system arousal that coincide
with affect, thus allowing them to measure affective trajectories on a continuous timescale, detect changes in negative affect
before the individual is consciously aware of them, and reduce user burden to improve data completeness. However, it is unknown
whether sensor features can distinguish between positive and negative affect states, given that physiological arousal may occur
during both negative and positive affect states.

Objective: The aims of this study are (1) to test the hypothesis that sensor features will distinguish positive and negative affect
states in individuals with BE with >60% accuracy and (2) test the hypothesis that a machine learning algorithm using sensor data
and EMA-reported negative affect to predict the occurrence of BE will predict BE with greater accuracy than an algorithm using
EMA-reported negative affect alone.

Methods: This study will recruit 30 individuals with BE who will wear Fitbit Sense 2 wristbands to passively measure heart
rate and electrodermal activity and report affect and BE on EMA surveys for 4 weeks. Machine learning algorithms will be
developed using sensor data to distinguish instances of high positive and high negative affect (aim 1) and to predict engagement
in BE (aim 2).

Results: This project will be funded from November 2022 to October 2024. Recruitment efforts will be conducted from January
2023 through March 2024. Data collection is anticipated to be completed in May 2024.
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Conclusions: This study is anticipated to provide new insight into the relationship between negative affect and BE by integrating
wearable sensor data to measure affective arousal. The findings from this study may set the stage for future development of more
effective digital ecological momentary interventions for BE.

International Registered Report Identifier (IRRID): DERR1-10.2196/47098

(JMIR Res Protoc 2023;12:e47098) doi: 10.2196/47098
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Introduction

Binge eating (BE), characterized by perceived overeating
accompanied by a subjective sense of loss of control over eating
[1], is a public health crisis associated with significant
psychological and physical morbidity [2-6]. The frontline
treatment for BE, cognitive behavioral therapy, fails to produce
remission in 40%-70% of individuals [7,8]. There is a clear
need to better understand specific risk factors for BE that could
be targeted to improve outcomes.

The affect regulation model of BE posits that affect
dysregulation (ie, difficulty tolerating or regulating negative
emotional states) is a significant, momentary risk factor for BE,
as BE is negatively reinforced by the alleviation of negative
affect that it facilitates [9-11]. Although the affect regulation
model of BE has been substantiated in extant literature [12-14],
there remain several unanswered questions about the role of
affect in BE.

Existing literature examining affect as a momentary predictor
of BE has exclusively used ecological momentary assessment
(EMA) [12,13,15-20]. EMA methodologies for BE typically
involve completing multiple daily surveys on a smartphone to
report binge episodes and contextual risk factors for BE.
Although EMA allows for the examination of within-day
relationships between affect and BE, these surveys are
completed only every few hours, which precludes the
examination of minute-to-minute changes in affect [21]. The
field has already identified some inconsistent findings on the
role of affect in predicting BE that have been attributed to the
inability to measure proximal changes to affect before and after
BE with EMA [14-16,18-20,22,23]. For example, an individual
may experience rapid-onset negative affect related to an event
(eg, intense anxiety or sadness upon hearing bad news) and
engage in BE to quell the negative affect within the span of
minutes, in contrast to the hours-long timescale on which the
relationship between EMA-measured affect and BE is typically
examined. Thus, it is critical to examine continuously measured
affect to uncover the timescale on which negative affect
increases BE risk.

Existing research using EMA to study BE has also focused on
only 1 of the 2 key aspects of affect, affective valence (ie, the
extent to which an affective state is pleasant or unpleasant).
Measuring markers of affective arousal (ie, the degree of
associated physiological activity) alongside affect valence may
improve prediction of BE, as affect arousal may increase

eating-related disinhibition [24] and the aversiveness of negative
affect states [25].

A novel data collection method that could address the limitations
of EMA is ambulatory passive sensing. Sensors are likely to
augment EMA for the real time measurement of affect as they
permit objective, continuous, and passive measurement of
biomarkers of affective arousal. The use of sensors to measure
physiological correlates of affect will allow for the observation
of affect trajectories immediately before, during, and after
EMA-reported binge episodes. Sensor data may also be able to
detect negative affect before the individual is consciously aware
of it, potentially facilitating earlier detection of risk for BE.
Passive sensors also require substantially lower user engagement
than EMA, which may produce higher compliance with data
collection and reduce the requisite frequency of EMA.

Established biomarkers of affect that can be measured by
ambulatory sensors include heart rate, heart rate variability, and
electrodermal activity [26,27]. These features are measures of
sympathetic nervous system arousal (eg, elevated heart rate,
increased electrodermal activity) and parasympathetic nervous
system inactivation (eg, decreased heart rate variability), which
are hallmarks of affective arousal. A substantial number of
studies have identified reliable changes in heart rate, heart rate
variability, and electrodermal activity associated with negative
affect [28-35], but only 2 studies have used ambulatory sensors
to assess heart rate variability prior to BE [36,37]. These studies
found that heart rate was elevated, and heart rate variability
decreased prior to loss of control eating episodes relative to
nonloss of control eating episodes, offering preliminary evidence
that these variables may be biomarkers of affect that confer BE
risk [36,37]. However, these studies were conducted among
adolescents and retrospectively compared heart rate indices
prior to loss of control and nonloss of control eating episodes,
rather than examining the accuracy of using heart rate data
patterns to predict engagement in BE. Using passive sensors to
collect momentary, naturalistic affective data is likely to improve
our understanding of the role of affect in maintaining BE and
our capacity to accurately predict future BE.

One challenge to the use of passive sensors to measure affect
is that physiological arousal may also be elevated during some
high-arousal positive affect states in addition to negative affect
states. Some previous research using sensors to measure
affective arousal has identified distinct physiological features
associated with negative affect such as longer duration of
physiological arousal [38], greater changes in electrodermal
activity and heart rate, and greater variability in interbeat
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intervals associated with negative affect compared to positive
affect [27,35,39,40]. Furthermore, models have been developed
that can distinguish negative and positive affect based on
physiological parameters in healthy individuals [41,42]. Given
the incredibly large and dimensional data sets yielded by
sensors, these previously developed models have used machine
learning, an analytic approach well-suited to predict an output
(ie, negative or positive affect) based on several input variables
(eg, heart rate variability and electrodermal activity). However,
the capacity for these models of sensor data to distinguish
negative and positive affect has not yet been established among
individuals with BE. Existing research using
psychophysiological sensors among individuals with BE has
demonstrated elevated autonomic reactivity to psychological
stress in these individuals [43-45]. However, obesity, which
affects 28%-42% of individuals with BE [3], has been associated
with reduced sympathetic activity [46,47]. Given these
contradictory findings, it is important to establish whether
sensors can distinguish negative and positive affect in this
specific population. If passive sensors can distinguish between
positive and negative affect states, these sensors will provide
information about both the occurrence of negative affect and
the intensity of physiological arousal associated with that
affective state. Even if passive sensors cannot distinguish
positive and negative affect, information about the intensity of
affective arousal may still improve the capacity to detect risk
for BE above EMA alone.

Importantly, the use of sensor technologies to improve the field’s
capacity to predict risk for BE offers transformative potential
to power momentary interventions that target negative affect.
Improved prediction of BE could facilitate the development of
more effective just-in-time adaptive interventions that promote
the use of therapeutic skills (eg, emotion regulation skills) when
an individual is at identified risk for BE. Accordingly, this study
will use psychophysiological sensors and EMA to measure
negative affect to improve the prediction of BE. The study will
evaluate whether the features extracted from passive sensor data
can distinguish positive and negative affect in individuals with
BE (aim 1). Consistent with previous research using sensors to
distinguish positive and negative affect in healthy populations,
we hypothesize that sensor features will distinguish between
EMA-reported negative and positive affect with ≥60% accuracy
[33]. Second, the study aims to develop and compare machine
learning algorithms using sensor- and EMA-measured negative
affect to predict BE episodes. We hypothesize that the combined
sensor- and EMA-based machine learning algorithm will be
more accurate for predicting BE than the algorithm using only
EMA data. Based on past findings using sensors to predict
emotional eating and dietary lapses, we hypothesize that the
combined sensor and EMA algorithm will classify the
occurrence of BE episodes with ≥70% accuracy [48,49].

Methods

Study Design
This study will use an observational design to examine real-time
associations between affect (measured by psychophysiological
sensors and EMA) and BE.

Participants
Participants will be 30 individuals with recurrent BE (defined
as at least 12 BE episodes in the past 3 months); we will enroll
participants with objective binge episodes, subjective binge
episodes, or a combination of both, as both behaviors are
hypothesized to be maintained via the affect regulation model.
Participants will be eligible for this study if they are 18-65 years

old, have a BMI of ≥18.5 kg/m2, own a smartphone, and are
willing to wear a smartwatch and complete EMA surveys for
the 4-week study protocol. Exclusion criteria include inability
to speak, read, and write English fluently, current eating
disorder–focused treatment, and current, severe psychopathology
that would inhibit engagement in study protocols (eg, active
suicidality, psychosis, and substance use disorder). As
antecedents for BE episodes are similar in bulimia nervosa,
binge eating disorder, and other specified feeding and eating
disorder diagnoses, individuals with any of these diagnoses will
be eligible for the study provided they meet all other inclusion
or exclusion criteria. We will aim to enroll 15 female (50%)
and 15 male participants (50%). Furthermore, given that
individuals with minoritized racial and ethnic identities have
been underrepresented in eating disorders research, we aim to
enroll at least 15 participants (50%) belonging to minoritized
racial or ethnic groups.

Study Recruitment and Procedures
Participants will be recruited from across the United States using
social media and radio advertisements and ResearchMatch.
Participants will complete an initial phone screen, followed by
a baseline assessment to confirm eligibility. Participants will
complete the Eating Disorder Examination, a diagnostic
interview, at the baseline assessment to confirm eligibility and
assess BE frequency [50]. Once eligibility is confirmed,
participants will be enrolled in the study and begin the data
collection protocol. Participants will be oriented to the use of
the smartwatch and completion of EMA surveys at the baseline
assessment. Participants will then complete EMA surveys and
wear the Fitbit Sense 2 smartwatch daily for 28 days.
Participation will be fully remote, with assessments conducted
using Drexel Health Insurance Portability and Accountability
Act–compliant Zoom platform and Fitbit Sense 2 sensor watches
mailed to and returned by participants via prepaid shipping
labels. Informed consent will be obtained from all participants.

Ethics Approval
Study procedures have been approved and will be overseen by
Drexel University’s institutional review board (approval
received September 2022; protocol number 2207009376). All
procedures will be conducted in accordance with the Helsinki
Declaration.

Measures

Psychophysiological Sensors to Measure Affect
Fitbit Sense 2 watches are wrist-worn devices that include
several psychophysiological sensors, including
photoplethysmography sensor, accelerometer, galvanic skin
response sensor, and infrared thermopile. The heart rate features
extracted from data collected by the photoplethysmography
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sensor will include time domain features, including average
heart rate and root mean square of successive differences
between normal heart beats (a measure of average variability
in heart rate), and frequency domain features, including
high-frequency heart rate variability (a measure of
parasympathetic activity), and low-frequency heart rate
variability (a measure of sympathetic arousal). These
components were selected as they have been shown to change
during conditions of elevated affective arousal among
individuals with BE in laboratory and ambulatory studies
[36,43,45,51,52]. Electrodermal activity features to be extracted
from galvanic skin response data are tonic skin conductance
level (average skin conductance level) and skin conductance
responses (number of spikes in skin conductance), as these
indices increase during periods of elevated negative affect
among individuals with EDs characterized by BE [52-54]. The
Fitbit Sense 2 watches contain sensors similar to devices that
have demonstrated high validity for the measurement of heart
rate indices and acceptable validity for the measurement of
electrodermal activity during stressors [54-56].

EMA-Measured Eating Behaviors and Affect
Participants will complete signal-contingent and
event-contingent EMA surveys during waking hours to report
affect and the occurrence of BE and non-BE episodes (see
Multimedia Appendix 1 for EMA questions). Signal-contingent
surveys will be sent 6 semirandom times per day via Ethica
EMA software (Ethica Data) [57]. Participants will be instructed
to complete event-contingent surveys whenever they engage in
BE (defined as overeating accompanied by a sense of loss of
control). Consistent with BE EMA literature [12,22,58], all
surveys will include ratings of positive and negative affect using
the Short-Form Positive and Negative Affect Schedule modified
to also include guilt, joy, excitement, and satisfaction [59]. Guilt
will be included, given its established relevance to risk for BE
[18] and joy, excitement, and satisfaction will be included as
these items have high face validity with positive emotions
individuals endorse, do not overlap with already included
positive and negative affect schedule items, and have been used
in previous EMA research on BE [60]. These items will be rated
on a 5-point scale (1=very slightly or not at all to 5=extremely)
and instances where a participant rates an item greater than 1
SD above their mean level (computed from all EMA ratings
across the full study period) will be considered an instance of
high negative affect or positive affect.

Statistical Analyses

Aim 1
To evaluate aim 1, instances of high positive and high negative
affect will be identified from EMA data; instances of concurrent
high negative and high positive affect (if observed) will be
excluded from analysis for aim 1, as binary classification
machine learning models require mutually exclusive, binary
outcomes [61]. Sensor features from the 30-minute period
surrounding (15 minutes before and 15 minutes after) EMA
surveys with high positive or negative affect ratings will be
included in the machine learning models. This time frame was
selected, given prior research indicating that affective states
typically last ≥30 minutes [62,63]. The 30-minute period will

be split into six 5-minute moving windows, for which heart rate,
heart rate variability, and electrodermal activity indices will be
computed.

Supervised binary classification machine learning models will
be developed using heart rate, heart rate variability, and
electrodermal activity indices to distinguish instances of high
negative affect from high positive affect. Lasso regression will
be used to select features that distinguish instances of high
positive and high negative affect. Machine learning models (eg,
support vector machines, classification and regression trees,
and neural networks) using the selected parameters will be
developed using the first 3 weeks of data collected (training
data) and will be evaluated for accuracy using the last week of
data (test data) collected from all participants. The last week of
data will be excluded from algorithm development to ensure
that the algorithms can be evaluated on previously unseen data
to select the most accurate algorithms and avoid overfitting.
Both group-level and individual-level algorithms will be
generated to reduce model variance and bias, thereby addressing
concerns about both over- and underfitting [61]. This approach
will balance the need for accurate prediction with developing
a group-level algorithm that substantiates the general capacity
to predict BE using negative affect. Given the greater importance
of identifying all instances of negative affect-related risk for
BE to power a future intervention than correctly classifying
instances without negative affect, minimum model sensitivity
thresholds of 70% will be prescribed. The best performing
models will be selected by maximizing sensitivity while
maintaining adequate (eg, >50%) specificity and the average
accuracy will be computed for the best performing models.

Aim 1 Power
Previous studies conducted by our team using EMA to measure
negative affect among individuals with BE indicate that these
individuals endorse high negative affect at 22%-32% of surveys
and high positive affect at 12%-34% of surveys. Previous EMA
research on BE suggests overall rates of missing data of
9.7%-32.6% [12,22,58]. Conservatively estimating that
approximately 20% of surveys will include high negative affect,
20% of surveys will include high positive affect, and 30%
missing data, we expect at least 529 instances each of high
negative and positive affect in the training data (~0.2×6 surveys
per day×21 days×30 participants×0.7 compliance). Simulation
studies have indicated that supervised machine learning models
using highly dimensional data require ≥150 observations in each
class to be powered at 0.80 to detect a small to medium effect,
which 529 exceeds [64].

Aim 2
Two sets of supervised binary classification machine learning
models will be developed to predict BE, 1 set using only
EMA-reported negative affect data and the other integrating
both EMA- and sensor-measured negative affect. Due to the
dearth of research examining the timescale on which negative
affect increases risk for BE, sensor patterns across several
timescales (ie, 5-, 15-, 30-, and 60 minutes prior to the binge
episode) will be included in the models, and the timescales that
maximize model sensitivity will be retained. These time periods
will be divided into 5-minute moving windows, for which heart
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rate, heart rate variability, and electrodermal activity indices
will be computed. Sensor features computed for each 5-minute
window within the selected timescale will be included as
predictors in each machine learning algorithm examined. As in
aim 1, both group- and individual-level algorithms will be
generated, and the algorithms will be developed using the first
3 weeks of data (training data) and evaluated on the last week
of data (test data). Sensitivity will be set a priori >70% and the
best fitting model for EMA-reported negative affect alone and
for the combined data will be selected by maximizing sensitivity
while maintaining adequate specificity.

Aim 2 Power
Previous studies conducted by our team and others have
identified an average of 2-6 BE episodes per week per
participant, with most episodes occurring on separate days
[12,22,65,66]. Conservative estimates of 3 binge episodes per
week will yield approximately 189 BE episodes (~3 episodes
per week×3 weeks×30 participants×0.7 compliance) and 1134
non-BE episodes (~18 episodes per week×3 weeks×30
participants×0.7 compliance) in the training data. As in aim 1,
since the number of observations in each class exceeds 150, the
supervised machine learning models will be sufficiently powered
[64]. 95% bootstrap CIs will be constructed for each set of
models (combined and EMA-only) to evaluate their accuracy;
if the intervals do not overlap, this indicates that 1 model is
significantly more accurate. For the bootstrap CI comparison,
a power analysis conducted in G*Power (version 3.1;
Heinrich-Heine-Universität) (power=0.80; α=.05) indicated
that ≥77 total test observations are required to detect a medium
effect. Aim 2 will therefore be fully powered, given 63 binge
episodes (~3 episodes per week×1 week×30 participants×0.7
compliance) and 378 anticipated non-BE episodes (~18 episodes
per week×1 week×30 participants×0.7 compliance) in the test
data [67].

Results

This study received funding from the National Institute of
Mental Health (award number F31MH131262) for the period
of November 2022 through October 2024. Recruitment began
in January 2023 and is expected to continue through March
2024; as of April 2023, a total of 7 participants have been
enrolled. We anticipate that data collection will be completed
by May 2024, and all analyses will be conducted by July 2024.

Discussion

Principal Findings
We anticipate that findings from this study will clarify whether
features extracted from passive sensor data can distinguish
between positive and negative affect among individuals with
BE and provide an estimate of the accuracy with which these
features can distinguish these emotional states. Furthermore,
the study findings will identify which features are useful for
distinguishing positive and negative affect states, which we
anticipate will include both heart rate and electrodermal activity
features. The findings from the study will also clarify the extent
to which sensor-measured negative affect improves upon
EMA-measured negative affect for the accurate prediction of
BE episodes and provide an estimate for the accuracy of
machine learning algorithms using these data sources to predict
BE.

If our hypotheses are supported, our findings will replicate
previous algorithms using sensor data to distinguish positive
and negative affect states in a population of individuals with
BE [33]. Furthermore, this study will build upon previous
research using psychophysiological sensors to measure
autonomic indices of emotional arousal [28-35] and to assess
autonomic activity prior to BE [36,37] among individuals with
BE by using these sensors to predict ecological BE in real time.

Study Implications and Future Directions
This study will use an innovative data collection method to
detect real-time risk for BE, potentially providing a new avenue
to study the role of affect in BE. This study may set the stage
for a future sensor-integrated momentary intervention system,
a technological innovation that could enhance the efficacy of
mobile health tools. The findings from this study will be
disseminated via presentation at scientific conferences and
publication in a peer-reviewed journal.

Strengths and Limitations
This study is strengthened by the use of psychophysiological
sensors and EMA to measure affect and eating behavior in an
ecologically valid way. The inclusion of a transdiagnostic
sample and a high proportion of men and individuals of
minoritized racial and ethnic identities will increase the
generalizability of our findings to groups that are
underrepresented in research on BE. This study is limited by
the possibility of reactivity to wearing the sensors or completing
EMA surveys and the potential impact of limited participant
insight and social desirability on reporting affect and BE on
EMA.
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