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Abstract

Background: Physiological signals such as heart rate and electrodermal activity can provide insight into an individual’s mental
state, which are invaluable information for mental health care. Using recordings of physiological signals from wearable devices
in the wild can facilitate objective monitoring of symptom severity and evaluation of treatment progress.

Objective: We designed a study to evaluate the feasibility of predicting obsessive-compulsive disorder (OCD) events from
physiological signals recorded using wrist-worn devices in the wild. Here, we present an analysis plan for the study to document
our a priori hypotheses and increase the robustness of the findings of our planned study.

Methods: In total, 18 children and adolescents aged between 8 and 16 years were included in this study. Nine outpatients with
an OCD diagnosis were recruited from a child and adolescent mental health center. Nine youths without a psychiatric diagnosis
were recruited from the catchment area. Patients completed a clinical interview to assess OCD severity, types of OCD, and number
of OCD symptoms in the clinic. Participants wore a biosensor on their wrist for up to 8 weeks in their everyday lives. Patients
were asked to press an event tag button on the biosensor when they were stressed by OCD symptoms. Participants without a
psychiatric diagnosis were asked to press this button whenever they felt really scared. Before and after the 8-week observation
period, participants wore the biosensor under controlled conditions of rest and stress in the clinic. Features are extracted from 4
different physiological signals within sliding windows to predict the distress event logged by participants during data collection.
We will test the prediction models within participants across time and multiple participants. Model selection and estimation using
2-layer cross-validation are outlined for both scenarios.

Results: Participants were included between December 2021 and December 2022. Participants included 10 female and 8 male
participants with an even sex distribution between groups. Patients were aged between 10 and 16 years, and adolescents without
a psychiatric diagnosis were between the ages of 8 and 16 years. Most patients had moderate to moderate to severe OCD, except
for 1 patient with mild OCD.

Conclusions: The strength of the planned study is the investigation of predictions of OCD events in the wild. Major challenges
of the study are the inherent noise of in-the-wild data and the lack of contextual knowledge associated with the recorded signals.
This preregistered analysis plan discusses in detail how we plan to address these challenges and may help reduce interpretation
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bias of the upcoming results. If the obtained results from this study are promising, we will be closer to automated detection of
OCD events outside of clinical experiments. This is an important tool for the assessment and treatment of OCD in youth.

Trial Registration: ClinicalTrials.gov NCT05064527; https://clinicaltrials.gov/study/NCT05064527

International Registered Report Identifier (IRRID): DERR1-10.2196/48571

(JMIR Res Protoc 2023;12:e48571) doi: 10.2196/48571
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Introduction

Increased heart rate and electrodermal activity (EDA) are
associated with mental phenomena such as fear, anxiety, anger,
contamination disgust, embarrassment but also happiness [1].
Decreased heart rate and increased EDA are associated with
sadness and mutilation-related disgust [1]. These negative
emotions are seen in obsessive-compulsive disorder (OCD).
Several types of OCD symptoms are linked with specific
emotional profiles (eg, fear of contamination and contamination
disgust, fear of harming or violating others, and guilt and
shame), which could be detected using affective computing.
Thierfelder et al [2] showed that an increase in heart rate and a
decrease in heart rate variability (HRV) are indicative of an
increase in stress during OCD events. Heart rate and HRV show
distinctive patterns of anxiety when patients are exposed to
fearful situations and relief when performing compulsive
behavior. These patterns were found to be highly different
between individuals but useful for distinguishing between
cognitive stress, exposure and response prevention (ERP)
episodes, and physical activity.

OCD is a burdensome psychiatric disorder that affects up to 3%
of youths (individuals younger than 18 years) [3-5]. Obsessions
are repetitive and intrusive thoughts that cause negative
emotions such as anxiety, disgust, embarrassment, shame, guilt,
and feelings of incompleteness, that is, marked distress [6].
Compulsions are repetitive or ritualized behaviors or actions
the patient feels compelled to perform, despite their sometimes
nonsensical nature [7]. Distress can arise from performing
compulsions and when prevented from performing compulsions.

First-line treatment for OCD is cognitive behavioral therapy
with ERP [8,9]. In the context of OCD treatment, ERP refers
to approaching OCD symptom–triggering stimuli (exposure)
and refraining from performing rituals and compulsions
(response prevention). During ERP, patients are asked to
intermittently report their level of distress [10]. This information
helps the therapist adjust the interventions. Awareness of distress
trajectories within and across ERP sessions is also a tool used
to increase therapeutic learning [11,12]. Therefore, monitoring
distress levels during exposure is important for optimizing ERP
and measuring the severity of symptoms in OCD. Similarly,
when collected over time, distress can provide information about
the progression and improvement of the condition [13].

Many symptoms of OCD are directly related to specific objects
or situations that cannot be realistically reproduced in clinical
settings. Automatic, continuous detection of these OCD signals

would facilitate close monitoring of patient treatment progress
and allow for more targeted interventions and evaluation of
treatment in the real world [14,15]. Ideally, distress would be
objectively and affordably assessed in a noninvasive manner.

Recently, machine learning methods applied to data collected
using smartwatches have demonstrated success in classifying
stress levels [16,17], recognizing emotions [18,19], detecting
panic attacks [20], and detecting hand washing—a common
compulsion in individuals with OCD [15]. Thierfelder et al [2]
demonstrated that recordings of heart rate and HRV using
wearable devices may also be used to identify distress in patients
with OCD caused by exposure during ERP sessions.
Additionally, relief through compulsive behavior is reflected
in the recorded heart rate and HRV, but the results also suggest
that a change in the environment or simple distractions may
reduce anxiety.

This paper aims to assess the possibility of using machine
learning models for the detection of OCD events in the wild
based on signals from wrist-worn devices. Automatic detection
of OCD events will allow targeted interventions in the real world
to improve OCD treatment. To the best of our knowledge, this
is the first study of this kind. We aim to investigate the
relationship between personalized and generalized predictive
models by comparing the predictive performance of models
trained on each participant individually and models trained on
a sample of participants. In this paper, we also weigh our
methodological decisions. Our research questions may be
summarized as follows: (1) Is it feasible to collect enough data
(physiological signals and tags) from individual participants to
evaluate the feasibility of developing models? (2) To what extent
do participants adhere to wearing the biosensor? (3) Is the
number of event tags associated with OCD severity? (4) Do
features extracted from physiological signals during OCD
episodes in the wild resemble features during controlled ERP
sessions in the clinic? (5) Can OCD episodes in the wild be
predicted using physiological signals from a wearable biosensor?
and (6) To what extent do predictive models generalize to newly
recorded data from the same subjects or new subjects?

Methods

Overview
A complete description of the study design, recruitment, and
data collection procedures are reported in the Wrist Angel study
protocol, which was submitted for publication prior to the
collection of data from the last participant [21].
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Participants
A total of 18 youths aged 8 to 16 years and their parents were
included in this study, and data were collected for 8 weeks. Nine
participants had an OCD diagnosis (patients) and 9 youths
presented without a psychiatric diagnosis (controls). Other
studies have predicted aggressive behavior from wearables worn
by 20 youths in 87 hours (10 consecutive days) or behavioral
synchrony between father and their child with Down syndrome

from wearables worn by 12 families in a 7-minute free play
[22,23]. Although the number of participants is low, we followed
each participant for 8 weeks, and we argue it will be enough
for a feasibility study of prediction possibilities (as a minimum
within individuals). Additionally, we are targeting a high
emotional response, facilitating a stronger correlation between
biosignals and emotional response. We present a brief
description of the data acquisition illustrated in Figure 1 using
the E4 wristband (Empatica) [24].

Figure 1. Design of the study and data collection procedure. Before and after an 8-week data collection period, all participants take part in a clinical
recording session in the lab. Participants with an OCD diagnosis complete a clinical interview that assesses OCD severity and an ERP session. Participants
with no psychiatric diagnosis engage in physical activity. During the in-the-wild recordings, participants wear the Empatica E4 biosensor daily during
waking hours for 8 weeks and are asked to tag events of distress related to their OCD symptoms for patients, whereas nonclincal participants tag events
of intense fear. Researchers meet with participants approximately every 3 days to switch wristbands. The collected biosignal data is then transferred to
the hospital server. CY-BOCS: Children’s Yale-Brown Obsessive Compulsive Scale; ERP: exposure and response prevention; OCD: obsessive-compulsive
disorder; REDCap: Research Electronic Data Capture.

Ethical Considerations
This study was approved by the ethics committee of the Capital
Region of Denmark on June 17, 2021 (H-18010607-79689).
Participants received written and verbal information about the
study and the plan for disseminating results before they or their
legal guardians signed the consent forms. We were not aware
of any major risks or benefits for participants associated with
participation. Adverse reactions to the biosensor throughout the
study were monitored.

Laboratory Recordings
Before (week 0) and after (week 8) data acquisition, each
participant partook in laboratory experiments to obtain
recordings of physiological signals in a controlled environment.
Physiological signals were collected using the Empatica E4
wristband under rest and stressful conditions. During the rest
period, participants were asked to sit still and quietly, without
talking or touching each other, and to relax to the best of their
ability. To simulate stressful conditions, control participants
engaged in physical activity for approximately 10 minutes,
while patients completed an ERP exercise. During the ERP task,
patients approach OCD symptom–provoking stimuli and refrain
from compulsions for up to 15 minutes led by a mental health
professional in the presence of their participating parent. Patients
provided subjective units of distress, that is, they rated their

level of distress on a scale from 0 (no distress) to 10 (extreme
distress), every few minutes.

In-the-Wild Recordings
The youth and 1 of their parents were asked to wear the
Empatica E4 biosensor daily during waking hours for 8 weeks.
Patients were asked to press the event tag button when they felt
stressed by their OCD symptoms. Parents of patients were asked
to tag every time they noticed their child was distressed by their
OCD symptoms. Control youth were asked to push the button
when they felt very scared, and control parents were asked to
push the button when they noticed that their child felt very
scared. Researchers met with participants up to twice a week
during the 8 weeks to exchange biosensors full of data with
empty fully charged biosensors.

Measures

Physiological Signals
The E4 wristband contains a photoplethysmographic (PPG)
sensor, an EDA sensor, a 3-axis accelerometer, an optical
thermometer, and an event tag button that records a point in
time when pressed. PPG uses infrared light to measure changes
in blood volume, that is, blood volume pulse (BVP). BVP is
sampled 64 times per second and can be used to calculate the
timings of the interbeat interval (IBI) and the heart rate [25].
Under conditions of slight movement (<30% of the time), it is
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possible to use the IBI to compute HRV. However, this
constraint is often too rigid and results in the removal of entire
signals, making this approach impractical for robust data
acquisition in the wild. The EDA sensor measures the skin
conductance sampled 4 times per second. The accelerometer
measures movement on 3 axes at a sampling rate of 32 times
per second. The optical thermometer measures skin temperature
at a sampling rate of 4 times per second.

Clinical Measures
Participants were assessed with the Children’s Yale-Brown
Obsessive Compulsive Scale (CY-BOCS) [26] before the start
of the observation period. The CY-BOCS is the gold standard
measure of OCD symptom severity [26]. Ten items (five items
each for obsessions and compulsions) are summed to a total
severity score [26]: (1) How much time is spent on obsessions
and compulsions? (2) To what extent do obsessions and
compulsions interfere with normal functioning? (3) How much
distress do obsessions and compulsions (or not performing
compulsions) cause? (4) To which extent are you able to resist
obsessions and compulsions? and (5) To which extent do you
have control over obsessions and compulsions? Five obsession
or compulsion items can be summed to obtain obsession or
compulsion severity scores, respectively. The CY-BOCS
severity score has demonstrated high internal consistency and
convergent and discriminant validity [10].

The CY-BOCS also includes a checklist for common symptoms,
which are presented in 15 categories. These include seven
obsession categories: (1) contamination, (2) aggressive, (3)
sexual, (4) superstitious, (5) religious or moral, (6) hoarding,
and (7) miscellaneous, and the eight categories for compulsions
include (1) cleaning or washing, (2) checking, (3) repeating, (4)
counting, (5) hoarding, (6) superstitious behaviors, (7) involving
others in rituals, and (8) miscellaneous. Meta-analysis supports
the existence of a 4-factor structure of OCD symptoms
representing the following factors: symmetry, forbidden
thoughts, cleaning, and hoarding [27]. Symmetry includes
thoughts about symmetry and counting, ordering, and repeating
compulsions. Forbidden thoughts include thoughts of an
aggressive, sexual, and religious nature. The cleaning category
covers contamination, somatic obsessions, and cleaning
behaviors. Finally, the hoarding factor includes obsessions about
losing or saving things and saving compulsions. We will
accumulate the number of endorsed items belonging to each
category to produce a category score as previously done in factor
structure studies [28].

Analysis Plan

Overview
This work will focus on the in-the-wild recordings obtained
from the youth participants only. We will treat marked OCD
events as binary targets and design predictive models of these
targets. We will limit the data to physiological signals and
marked events from youth and only consider data recorded
in-the-wild during the 8 weeks.

Assessing the Feasibility of In-The-Wild OCD Event
Prediction
Continuous data acquisition as described previously presents
several practical issues and barriers whose effects must be
evaluated for wide-scale use. Even though the Empatica E4
wristband is generally considered a nonintrusive device, some
patients might consider it a conspicuous piece of hardware and
fear strangers might judge them on a potentially sensitive
problem. Additionally, participants might need to adjust to
wearing the bracelet and learn to tag events at the appropriate
time, not forget to tag events, or even wear the wristband over
time.

We qualitatively evaluate the potential issues and barriers based
on feedback and comments from participants and their parents
during data collection approximately every 3 days. We associate
the number of days the wristband has been worn; the number
of recorded hours and tagged events per day as a function of
time to the CY-BOCS severity and type, number; and the
severity of OCD symptoms from the preobservation period
clinical interviews.

Preprocessing of Signals and Feature Extraction
We examine the length and end time of each recording session
to verify that participants only wear the Empatica E4 wristband
during waking hours. In the case where participants wear the
wristband during sleep, we intend to manually exclude these
recordings.

We extract features from the heart rate, skin temperature, EDA,
and BVP signals recorded by the Empatica E4 wristband. The
preprocessing of the signals is outlined as follows:

1. The skin temperature is processed using a sixth-order
Butterworth low-pass filter with a cutoff frequency of 1
Hz.

2. The heart rate is extracted using the PPG sensor in the
Empatica E4 wristband using a proprietary Empatica
algorithm. The recordings of the heart rate are used as is
and require no further preprocessing.

3. As discussed previously, the E4 wristband only provides
the IBI signal in periods of low movement. Therefore, this
signal is highly discontinuous and may not be useful for
extracting the HRV during short time windows. Instead,
the recorded BVP signal is segmented using a rolling
window of 5 seconds with a time step of 1 second [29]. For
each segment, we determine the noise level based on the
skew and kurtosis [30]. If the kurtosis is less than εk=–0.5
and the magnitude of the skew is less than ɛs=1, the segment
is deemed a low-noise segment and included in the
segmenting process. Features are extracted from each
selected segment and then averaged to obtain the final
features.

4. Features extracted from the EDA signal have previously
been found to be good predictors of stress [31,32]. However,
the EDA signal is also affected by physical activity and
environmental factors, leading to expected participant and
temporal variations unrelated to the stress level. The EDA
signal is first processed using a sixth-order Butterworth
low-pass filter with a cutoff frequency of 1 Hz. The signal
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is then normalized to the interval [0,1] to reduce the effects
of subject and temporal variations. The normalized signal
was decomposed into its tonic and phasic parts using the
NeuroKit2 library [33] for Python (Python Software
Foundation). The tonic part is a slowly varying baseline
conductivity, and the phasic part is a series of event-related
high-frequency peaks. The unnormalized EDA signal is
retained for feature extraction as the normalization may
inadvertently remove explanatory features related to the
level of the signal.

For feature extraction, we apply a window strategy around each
tagged OCD event, as shown in Figure 2. We use the 5-minute
period before each tag as positive observations. The 5 minutes
after each tag is removed is a buffer period to avoid event
contamination in nonevent windows. Nonevent windows of
equal temporal length are sampled randomly from the remaining
time periods as negative observations. By increasing the number
of randomly sampled negative observations, we investigate the
performance differences between models trained on
class-balanced data sets and models trained using more but
imbalanced data.

Figure 2. Illustration of the windowing strategy around each tagged OCD event (black). Positive cases are sampled from the period leading up to the
tagged event (green) and a buffer period of 5 minutes is applied after the event from which no observations can be sampled (red). Negative cases are
sampled randomly from the remaining time periods (blue). EDA: electrodermal activity.

Within each extracted window, we compute the features
tabulated in Table 1.

1. We compute the following time domain features of each
used signal: mean (SD), minimum, maximum, and gradient
of a least square regression. For the BVP signal, we also
compute the minimum, maximum, and average of the slope
fitted in each segment. For the heart rate and EDA signal
where the level is expected to carry some explanative
power, we also compute the quartiles and IQR.

2. From the BVP signal, we detect systolic peaks using the
NeuroKit2 library [33] within each low-noise segment.
These peaks are used to calculate the interbeat interval and
the successive differences of this interval. We then compute
the final features as the average of the IBIs and the root

mean square of the successive differences calculated in all
low-noise segments.

3. For the phasic component of the EDA signal, we compute
the number of peaks as well as the average peak amplitude
and response time.

4. For the EDA signal, we compute the power of the frequency
bands: ultralow frequency (0.01-0.04 Hz), low frequency
(0.04-0.15 Hz), high frequency (0.15-0.4 Hz), and ultrahigh
frequency (0.4-1.0 Hz). These frequency bands are
computed for the unnormalized EDA signal and the phasic
component.

5. For the BVP signal, we compute the mean (SD), median,
IQR, minimum, maximum, and sum of the frequency
content. These values are further separated into real and
imaginary parts.
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Table 1. Features extracted from each used signal.

BVPbEDAaTemperatureHeart rateFeature

µBVP, σBVPµsig, σsig

sig ∈ {EDA, Phasic}

µTEMP, σTEMPµHR, σHRMean and SD

p50
BVPp50

sig

sig ∈ {EDA, Phasic}

—cp50
HR

Median

—p25
sig, p75

sig

sig ∈ {EDA, Phasic}

—p25
HR, p75

HR
25th and 75th quartiles

—p75
sig – p25

sig

sig ∈ {EDA, Phasic}

—p75
HR-p25

HR
IQR

minBVP, maxBVP minsig, maxsig 

sig ∈ {EDA, Phasic} 

minTEMP, maxTEMPminHR, maxHRMinimum and maximum

µBVP
δ, minBVP

δ, maxBVP
δδTonicδTEMPδHRSlope

µRR———Average RR intervals

RMSSDRR———RMSSDd RR interval differences

—#Phasic——Number of peaks

—µPhasic
Amp, µPhasic

t——Average peak amplitude and response
time

—fsig
x

x ∈ {ULF, LF, HF, UHF}

sig ∈ {EDA, Phasic}

——Power in ULFe, LFf, HFg, and UHFh

components

RE (µBVP
f), RE (σBVP

f), IM

(µBVP
f), IM (σBVP

f)

———Mean (SD) of real and imaginary fre-
quency component

RE (p50
BVP,f), IM (p50

BVP,f)———Median of real and imaginary frequen-
cy component

RE (p75
BVP,f-p

25
BVP,f), IM

(p75
BVP,f -p25

BVP,f)

———IQR of real and imaginary frequency
component

RE (minBVP
f), RE (maxBVP

f), IM

(minBVP
f), IM (maxBVP

f)

———Minimum and maximum of real and
imaginary frequency component

RE (∑BVP
f), IM (∑BVP

f)———Sum of real and imaginary frequencies

aEDA: electrodermal activity.
bBVP: blood volume pulse.
cNot applicable.
dRMSSD: root mean of successive square differences.
eULF: ultralow frequency.
fLF: low frequency.
gHF: high frequency.
hUHF: ultrahigh frequency.

Machine Learning Modeling
To address the feasibility of predicting OCD events from
in-the-wild recordings from a machine learning point of view,
we make a principal component analysis decomposition of the
extracted features from recordings obtained from different
known settings. We compared recordings that precede tagged
OCD events in the wild during clinical ERP sessions of patients

with OCD, the resting phase of patients with OCD, and the
physical activity of the control group.

We will consider the prediction of OCD events a binary
classification problem. Each time window is considered an
independent observation and will be labeled according to the
window strategy outlined above. We apply a 2-layer
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cross-validation strategy with each layer being a random 10-fold
cross-validation.

We then consider 2 subproblems to study the generalization
capabilities of OCD event prediction: generalized predictive
models and personalized predictive models as shown in Figure
3. For each subproblem, we apply a 2-layer cross-validation

strategy designed to evaluate the generalization across
participants and time, respectively. The outer loop estimates
model performance by the accuracy, F1-score, and area under
the receiver operating characteristic. The inner loop selects the
model and hyperparameters that perform best according to
accuracy among logistic regression, random forest, feed-forward
neural networks (NNs), and mixed-effect random forest [34].

Figure 3. Design of the cross-validation strategies. Temporal generalized predictive models (A) and personalized predictive models (C) use a
leave-last-week-out strategy, while participant-based generalized predictive model (B) uses a leave-one-subject-out strategy. OCD: obsessive-compulsive
disorder.

Generalized Predictive Models
In generalized predictive models, we will train models to predict
OCD events across patients and for new time periods. We
compare the performance of models trained on data solely
consisting of patients with OCD and models with data from
both patients with OCD and controls.

In participant-based generalized models, we apply 2-layer
cross-validation where both the inner and outer layers are
leave-one-subject-out. That is, the models are trained on all
available participants, except 1 participant who is withheld for
testing purposes.

In temporal generalized models, the model is trained and tested
on recordings from all participants. The recordings of each
participant are divided into 3 data sets for training, validation,
and testing. The test data consists of the last week of recording

from all participants, and the validation set consists of the
recordings from week 7 from all participants.

Personalized Predictive Models
Personalized predictive models are trained using the same
schema as the temporal generalized models except a different
model will be trained for each participant. That is, models are
trained and tested on recordings from the same participant. For
each participant, the type of model and hyperparameter values
are selected using the training and validation data, and model
performance is evaluated using the test set.

Exploring Deep Learning Models
Once a baseline model based on feature extraction within
sampled windows is established, as described above, we will
explore the feasibility of deep learning models as a secondary
study. In particular, we will consider recurrent NNs [35] or 1D
convolutional NNs [36,37]. Feng et al [35] use a combination
of 1D convolutions and long short-term memory as feature
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extractors for stress detection on the WESAD [17] data set,
improving the performance over traditional machine learning
methods. Chen et al [38] use 1D convolution of 3 physiological
signals for automatic emotion recognition. Yu and Sano [37]
propose an AutoEncoder-based semisupervised method for
stress detection using physiological signals and self-reported
stress tags. A benefit of long short-term memories and 1D
convolutions is that they can be applied to the recorded time
series with little need for preprocessing. We will use the same
validation strategies as above. Considering data are limited, we
consider this an exploratory proof-of-concept study, and we do
not expect results from this study to directly generalize to other
studies.

Results

Participants were included between December 2021 and
December 2022. Participants included 10 female and 8 male
participants with an even sex distribution between groups.
Patients were between the ages of 10 and 16 years, and
adolescents without a psychiatric diagnosis were between the
ages of 8 and 16 years. Most patients (8/9, 89%) had moderate
(CY-BOCS total score between 14 and 24 [39]) to
moderate-severe OCD (CY-BOCS total score of 25-30 [39]),
except for 1 patient with mild OCD (CY-BOCS total score
below 14 [39]).

Discussion

Principal Findings
Here, we present a predefined plan for how data will be
preprocessed, analyzed, and presented in the publication. If the
artificial intelligence tools show promising results, this
preregistered analysis plan helps reduce interpretation bias.

We will investigate the predictive generalization of models to
newly recorded data and new individuals. Good generalization
to new data is required for real-world applications where models
are trained on historical data and then expected to perform well
on new data recorded in real time. Similarly, if models are found
to generalize well to new unseen individuals, they can be applied
immediately to new patients without the need for recording data
for fine-tuning. This would significantly expedite the application
of models on new patients.

The relatively small number of participants In this study could
raise issues regarding the generalization of the trained models,
especially considering that the data distribution between
participants is expected to be very imbalanced. To assess how
much data are needed to train predictive models with acceptable
performance, we will include a power analysis that compares
models trained on different amounts of the available data and
estimate the required number of observations to achieve a given
performance level using the inverse power law.

As physiological signals may differ heavily from person to
person, there is a risk that models trained using multiple people
will perform worse than models trained using only 1 person.
We assess this issue by comparing the predictive performance
of models personalized for each participant and generalized
models trained using multiple participants. If personalized

models are found to be superior to generalized models, a natural
following question is how much labeled data are needed to build
such a personalized model and predict OCD cases. Ideally, the
data collection period should be as short as possible. For this
purpose, it could be interesting to study whether recordings
from clinical sessions are sufficient to fine-tune models
previously trained on data from a larger corpus.

Models trained solely on patients with OCD are prone to false
positives and risk predicting OCD events in individuals without
OCD. In future work, we will assess this risk by comparing
predictive differences between models trained solely on data
recorded from known patients with OCD and models trained
using combined patient and control data.

Physiological signals recorded from in-the-wild wearable
devices inherently contain high levels of noise and artifacts
from the environment, motion, or reflection or absorption
properties of different skin tones. This is discussed in van Lier
et al [40], using a standardized assessment of the Empatica E4
EDA and BVP measurements compared with established clinical
reference devices on multiple levels. Features extracted from
the EDA signal using Empatica E4 are found to have significant
nonsystematic differences from the same features using the
reference device. However, they are still useful in detecting
stressful events expected to substantially increase skin
conductivity. Moreover, van Lier et al [40] speculate that the
“cool-down” period following a stressful event is longer using
the E4 than the reference device. This might be problematic for
OCD detection as periods following an OCD event could have
inflated feature values and be falsely classified as positives.
This highlights the need for our proposed block of 5 minutes
following each tagged event. For the BVP signal, van Lier et
al [40] found a good agreement with the reference device for
features related to the heart rate and root mean of successive
square differences. However, they also conclude that the E4 has
too much data loss due to noise to be useful for prediction of
stressful events but argue that the events in their study might
not induce enough stress or be of too short duration. The
experiments of van Lier et al [40] were conducted in a stationary
clinical setting. As such, the issues of data loss must be expected
to only increase using in-the-wild data. To combat this issue,
we apply the previously explained segmentation strategy to find
low-noise segments in the BVP that are suitable for feature
extraction.

In this initial study, we discard the parent recording and limit
our data to the youth recordings. It is important to understand
the relationship between the child tags and the child signals,
and we wish to keep the analysis as simple as possible to assess
the feasibility. However, in future work, we wish to incorporate
data from the parents as well. Children often seek help or
reassurance from their parents, which might increase the stress
levels of the parent. Thus, we would expect some degree of
synchrony between the physiological signals between child and
parent. How well the patients cope with their stress levels is
expected to be affected by the extent to which the parent
accommodates or refuses to accommodate the patient’s
symptoms. Refusal to accommodate symptoms or overly
accommodating behavior can both increase the stress of the
parent at the expense of the patient’s treatment. Additionally,
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parents may notice stress triggers before the child and attempt
to avoid the trigger. Such events can increase the stress of the
parent but not the patient. Thus, physiological signals from the
parent could be used for parent-focused interventions to ensure
the proper supportive treatment. Additionally, the parent tags
and signals may also provide insight into how their children’s
OCD affects the parents’ peripheral autonomic nervous system
responses. This is interesting independently of the children’s
signals.

Potential Clinical Implications
Automated detection of OCD events in the wild may help
clinicians assess and monitor the clinical severity of patients
waiting for or in treatment. Monitoring distress during ERP and
in between sessions allows for data-informed therapy. Automatic
feedback will help to increase the patient’s awareness of
physiological reactions and the connection between thoughts,
feelings, sensations, and actions—a goal of cognitive behavioral
therapy [41]. Furthermore, automated detection of OCD events
during the build-up phase may serve as a tool for individually
tailored ecological momentary interventions, which use
upcoming stress events to prompt just-in-time interventions to
prevent maladaptive behavior and promote adaptive coping
strategies [42]. However, this poses significant requirements to
the precision of the predictive models as this function itself
could evolve into a source of stress for some patients.
Additionally, if the signal characteristics indicating an OCD
event are not unique to OCD, it could contribute to an
overexaggeration of OCD symptoms if not implemented
carefully. This would give clinicians a wrong assessment of the
severity of patients and could result in wrong treatment plans.
However, comparison with other conditions is outside the scope
of this initial feasibility study and left for further research.

Limitations
In this initial study, we implement a simple windowing
approach. We do not have knowledge of whether OCD events
were tagged leading up to, during, or after a distress event. For
this reason, we consider fairly large time windows to ensure a
complete event is captured within each window. Larger time
windows were found to increase performance in stress detection
in a previous study [16]. The inherent risk associated with large
windows is the reduction of the signal-to-noise ratio and the
potential overlap of multiple events. Yet, others found that,
overall, the window size had little effect on the task of detecting
negative emotions using physiological signals in the wild [43].
However, window length was found to affect personalized
predictive models differently. As OCD symptoms often differ
from patient to patient, we similarly expect that window length
will affect participants differently. Therefore, adaptive
windowing based on each participant for personalized models
might give some knowledge of whether this is an appropriate
course to pursue. However, considering the small number of
patients included in this initial study, we do not expect
conclusive evidence regarding the generalizability of window
size. Therefore, a detailed discussion of the relation between
window length and symptom type is outside the scope of this
study. In future work, we might consider comparing different
window lengths for each patient, similar to Gjoreski et al [16].

Event tagging comes with inherent uncertainty. Patients might
forget to tag events completely or tag events minutes later after
remembering. Moreover, tags might happen by accident or the
same event might be tagged multiple times. These issues might
lead to falsely labeled positive and negative cases, thereby
negatively impacting model training, evaluation, and quality.
To circumvent this, Gjoreski et al [16] recommend also labeling
windows adjacent to tagged events as positive cases. They
argued that an anticipated stressful event might cause
physiological arousal leading up to the event as well. However,
as OCD events are entirely unplanned, this phenomenon is not
expected in our data. On the contrary, falsely labeling windows
earlier than the OCD event as positive cases would expectedly
negatively impact model precision. In some cases, patients
reported that they accidentally tagged events during data
collection but could not report the exact time, allowing us to
filter such wrong labels. However, these reports in combination
with our practical feasibility study might give some insight into
the extent of the false labels and allow us to gauge the impact
on the model assessment. In the end, a ground truth is required
for model training and the best source for internal private
processes, such as obsessions or the discomfort caused by
obsessions or compulsions, is the person experiencing them.
Even if this is sensitive to the problem of human error.

The simple windowing approach ignores the temporal
dependence between observations, which may cause false
detection of windows in proximity to a labeled OCD event.
Future work will investigate a time series–based approach to
detect events in the biosignal time series. This could potentially
be paired with some of the deep learning methods mentioned
in the section “Exploring Deep Learning Models.” A time-series
approach may also be useful to address the issues related to the
timing of the tags described above. Our current windowing
approach treats each tag as an independent event. This may be
a fair assumption for events separated by a longer period of time
than the cool-down period of 5 minutes. However, for events
less than 5 minutes apart, this assumption may not be valid.
Patients were asked to tag events when they were bothered by
their OCD, which can be interpreted in several ways. When an
obsessive thought enters the patient’s mind, the patient tags an
event and the first obsessive thought triggers another obsessive
thought. Should the patient tag a new event or is this still the
same event? A potential prospective future work is to investigate
how often tags appear and how dependent they are. Each tag
could be used to define a new time series describing the
probability of an OCD event currently taking place. At the time
of a tag, this probability would be one and then slowly taper off
during the period before the tag. This tapering would allow for
more uncertainty than the binary tags.

Initially, we disregard recordings from the accelerometer built
into the E4 wristband. Acceleration is not expected to be an
explanatory signal for the prediction of OCD events. However,
as previously discussed, explanatory signals such as EDA and
BVP are expected to experience motion artifacts. In previous
works, accelerometer data have been used to exclude periods
of high movement (see Taylor et al [44], Sarker et al [45], and
Hovsepian et al [46]). Initially, we were not interested in
excluding periods of high movement as we wish to assess the
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predictive performance of OCD events during periods of high
movement. We intend to study this qualitatively using physical
activity and ERP sessions in the clinical setting. Thierfelder et
al [2] found that general movement energy increases with higher
stress levels; however, that does not mean there is a causality.
Thierfelder et al [2] also argue that some compulsive tasks may
result in unique frequency spectra. However, this is not common
to all compulsive tasks and requires the need for an
accelerometer on both hands to look for asymmetric movements.
If motion artifacts are found to resemble the changes in
physiological signals due to OCD events, we suspect this will
result in an increase in type 1 errors (false positives). Gjoreski
et al [16] found that an activity context obtained from
accelerometer data may reduce the number of false positives.
In future work, we will use the laboratory recordings to obtain
an understanding of how physiological signals (eg, EDA and
BVP) are affected by physical motion compared to OCD events.
If these studies find that motion artifacts resemble OCD events,
we will aim for an end-to-end solution that explicitly includes

the data from the accelerometer in the modeling to reduce the
number of false positives.

Conclusions
In this work, we have discussed the data acquisition and planned
analysis for a feasibility study of the prediction of OCD events
in the wild using physiological signals recorded from smart
wristbands. The current predefined analysis plan will help limit
bias for reported results in future publications. We have
discussed in detail the potential issues and sources of uncertainty
as well as how we plan to address these issues, such as
interparticipant and temporal differences, the window length
used for feature extraction, event labeling, noisy recordings,
and movement-based artifacts. Additionally, we discuss ideas
for future work which will improve the understanding of how
these limitations affect the problem of predicting OCD events
in the wild. If the obtained results from this analysis plan are
promising, we will be a step closer to automated detection of
OCD events outside of clinical experiments. This is an important
tool for the assessment and treatment of OCD in youth.
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