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Abstract

Background: Recent advances in hardware and software enabled the use of artificial intelligence (AI) algorithms for analysis
of complex data in a wide range of daily-life use cases. We aim to explore the benefits of applying AI to a specific use case in
transplant nephrology: risk prediction for severe posttransplant events. For the first time, we combine multinational real-world
transplant data, which require specific legal and technical protection measures.

Objective: The German-Canadian NephroCAGE consortium aims to develop and evaluate specific processes, software tools,
and methods to (1) combine transplant data of more than 8000 cases over the past decades from leading transplant centers in
Germany and Canada, (2) implement specific measures to protect sensitive transplant data, and (3) use multinational data as a
foundation for developing high-quality prognostic AI models.

Methods: To protect sensitive transplant data addressing the first and second objectives, we aim to implement a decentralized
NephroCAGE federated learning infrastructure upon a private blockchain. Our NephroCAGE federated learning infrastructure
enables a switch of paradigms: instead of pooling sensitive data into a central database for analysis, it enables the transfer of
clinical prediction models (CPMs) to clinical sites for local data analyses. Thus, sensitive transplant data reside protected in their
original sites while the comparable small algorithms are exchanged instead. For our third objective, we will compare the performance
of selected AI algorithms, for example, random forest and extreme gradient boosting, as foundation for CPMs to predict severe
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short- and long-term posttransplant risks, for example, graft failure or mortality. The CPMs will be trained on donor and recipient
data from retrospective cohorts of kidney transplant patients.

Results: We have received initial funding for NephroCAGE in February 2021. All clinical partners have applied for and received
ethics approval as of 2022. The process of exploration of clinical transplant database for variable extraction has started at all the
centers in 2022. In total, 8120 patient records have been retrieved as of August 2023. The development and validation of CPMs
is ongoing as of 2023.

Conclusions: For the first time, we will (1) combine kidney transplant data from nephrology centers in Germany and Canada,
(2) implement federated learning as a foundation to use such real-world transplant data as a basis for the training of CPMs in a
privacy-preserving way, and (3) develop a learning software system to investigate population specifics, for example, to understand
population heterogeneity, treatment specificities, and individual impact on selected posttransplant outcomes.

International Registered Report Identifier (IRRID): DERR1-10.2196/48892

(JMIR Res Protoc 2023;12:e48892) doi: 10.2196/48892
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Introduction

End-stage kidney disease is growing globally affecting already
up to 800 million (10%) people worldwide. Dialysis or kidney
transplantation are current options for renal replacement therapy.
There are 100,000 dialysis patients in Germany, and 50,000 in
Canada [1,2]. In total, 1992 kidney transplantations in Germany
and 1673 kidney transplantations in Canada were performed in
2021 [3,4]. Kidney transplantation is the preferred way of renal
replacement therapy because it improves the quality of life for
patients, extends life expectancy, and saves resources of the
health care system [5-7]. However, there is a shortage in donor
organs. As a result, in total 6593 patients in Germany and 3060
in Canada were on a waiting list for a suitable donor kidney in
2021 [4,8]. Despite the advances in medicine and improvement
of short-term graft survival rates within the first year, long-term
graft survival remains stagnant. It shows an attrition rate of
approximately 5% annually after the second year resulting in
reinitiation of dialysis or transplantation in approximately 50%
of patients after 10 years [2,9]. After transplantation, regular
follow-up visits especially in the first year are required to detect
and prevent fatal outcomes, for example, infections, kidney
rejections, or cancer due to over- or underimmunosuppression.
Today, nephrologists lack adequate diagnostic measures for
assessing and stratifying the individual patient’s risk for
posttransplant outcomes, for example, graft failure or rejection
[10]. Early detection of patients at high risk would open an
additional prevention path: clinicians would have the opportunity
to initiate countermeasures earlier and prevent fatal outcomes.

The NephroCAGE consortium was initiated as a strategic
lighthouse project supported by the national governments of
Germany and Canada to combine medical and technical
expertise to build a real-world demonstrator and evaluate the
added value of artificial intelligence (AI) in a very specific
medical use case from nephrology. It brings together worldwide
excellence from transplant centers, academia, and industry from
Germany and Canada to join forces as depicted in Figure 1. In
total, 4 major clinical kidney transplant centers from both
nations have contributed transplants to form the first-of-its-kind
international NephroCAGE data set; it forms a longitudinal

database of patient-level data from more than 8000 transplant
cases over the past 2 decades. The NephroCAGE data set builds
the foundation for detailed retrospective data analysis using AI
learning techniques and the development of clinical prediction
models (CPMs) for prospective identification of posttransplant
outcomes of kidney transplant patients. With the help of the
CPM predictions, clinicians are expected to improve the quality
of care for future patients with kidney disease in Canada,
Germany and worldwide by identifying individual patient risks
even earlier than possible today.

Immunological differences play a key role in the development
of organ rejection reactions, which might lead to graft failure
or even graft loss [11,12]. It has been proven that transplant
patients sharing compatible serologic human leukocyte antigen
(HLA) types with the organ donor have better outcomes
compared to patients with incompatible HLA types [13]. Today,
only a subset of HLA genes is considered for matching of
immunological factors from donors and recipients. The HLA
genes located on chromosome six are responsible for encoding
of proteins that fold complex structures, so-called epitopes.
Today, it is known that checking for HLA compatibility requires
in addition to pure genetic information also the assessment of
the protein’s 3D structure, which might trigger immunological
response. However, current organ allocation algorithms in
productive use include only very limited aspects of HLA
compatibility, for example, number of mismatches per HLA,
to reduce the immunological risk for graft rejection and
donor-specific HLA antibodies [14,15]. Recently, new matching
methods have been developed to optimize assessment of organ
compatibility between donors and recipients incorporating more
functional aspects, for example, on biological level and
additional molecular specifics [16-18]. Selected methods showed
improved precision in predicting immunological risk, some of
them being also relevant for organ allocation [11,17,19,20].

The NephroCAGE consortium aims to show advantages of
using molecular compatibility for matching of organ donors
and recipients. Therefore, we aim to incorporate the latest
research results on B cell and T cell epitope matching as a
specific feature of our CPMs. Furthermore, we will investigate
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the applicability of tree-based machine learning (ML) algorithms
such as random forest (RF) and Extreme Gradient Boosting as
a foundation for the development of CPMs trained on real-world
transplant data in nephrology.

Therefore, access to high-quality real-world data is crucial to
train and validate high-quality AI models for clinical use. At
the same time, clinical data are considered as highly sensitive
data, which typically cannot be exposed for training of AI
models. The NephroCAGE consortium as the first of its kind
has access to multicenter transplant data from 2 nations for the
development of AI-based CPMs. One of our hypotheses is that
AI-based CPMs combining both clinical and immunological
data will lead to improved detection of patients at high risk for
graft loss and rejection. Conversely, we will focus on data from
patient follow-ups and immunological data, for example,
presence of donor-specific antibodies (DSA) for HLA.

Over the past decades, hospitals and transplant centers have
developed individual clinical information systems for
management of their transplant patient data. As a result, data
are scattered across multiple silos using various data formats,
which makes multisite research a complex data management
task. Thus, the use of standardized data formats, common data
dictionaries, shared terminologies and ontologies, and open
application programming interfaces (APIs) are required to
facilitate the deployment and integration of innovative AI-based
solutions into existing clinical IT systems.

Combining data from multiple clinical data sources for
development of CPMs traditionally involves complex data
preprocessing steps, for example, data harmonization, data
transformation, enable semantic interoperability, legal
agreements, and data privacy measures [21]. The use of a
federated learning infrastructure (FLI) turns around the paradigm
of centralized data storage: it enables transfers of algorithms to
the data to perform local data processing, thereby keeping data
at its original protected location [22,23]. In a decentralized FLI,
network nodes located at collaborating transplant centers
communicate on a peer-to-peer basis, that is, all network
communication is performed between individual network
partners without the need for any central instance. This raises
the questions about how access control to the nodes is enforced,
how CPMs are trained, and how to exchange CPMs between
sites. Recently, distributed ledger technology (DLT) emerged
to guarantee immutable transactions between untrusted parties.
These transactions are kept in a consistent state through
automated, algorithm-based consensus-building mechanisms,
which eliminates the need for third-party trust enforcement [24].
The aggregation of models in FLIs, that is, the combination of
individual CPM versions from different partners, is
well-established for parameter-based AI approaches such as
neural networks. However, only limited research investigates
the aggregation of tree-based or kernel-based AI approaches,
such as RFs or support vector machines, which are relevant for
the given nephrology use case.

Figure 1. For the first time, the NephroCAGE consortium brings experts from nephrology, academia, and industry on both sides of the Atlantic Ocean
together to investigate privacy-preserving ways to enable combination of real-world transplant data from Germany and Canada for design of clinical
prediction models to predict the patient-specific probability for severe posttransplant risks.
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Methods

NephroCAGE Consortium
The founding partners of the German-Canadian NephroCAGE
consortium are depicted in Figure 1 and their functions in the
consortium are outlined in the following:

• Transplant centers: Charité – Universitätsmedizin Berlin,
McGill University Health Centre and Centre Hospitalier
de l’Université de Montréal both located in Montréal,
Quebec, Canada, and Vancouver General Hospital of the
University of British Columbia are internationally known
hospitals, each of them with kidney transplant centers
covering large patient populations. For example, Charité
performs about 200 transplants per year and covers major
parts of North-Eastern Germany. Our hospital partners
provide access to real-world clinical data, which is key for
training and evaluation of CPMs. Furthermore, they provide
access to clinical subject-matter experts, drive the clinical
focus and lead the development of a clinical demonstrator
to evaluate our findings.

• Academia: All university hospital partners are universities
affiliated. Furthermore, the Karlsruhe Institute of
Technology and the Hasso Plattner Institute for Digital
Engineering contribute international expertise in software
engineering, AI technology, and digital health. Academic
partners contribute through applying the latest AI research
findings for building CPMs and to design and implement
the NephroCAGE FLI enabling a privacy-preserving way
of combining transplant data.

• Industry: PIRCHE AG is an internationally operating
company headquartered in Berlin, Germany, having
expertise in donor-recipient HLA molecular compatibility
assessment. Thus, PIRCHE will work on integration of
molecular donor-recipient matching incorporating HLA
data from HLA laboratories.

Ethical Considerations
All methods were carried out in accordance with relevant
guidelines and regulations in the participating countries
Germany and Canada. The project was approved by the
following ethics committees: (1) Charité – Universitätsmedizin
Berlin (EA4/104/21) and (2) Research Ethics Board of the
McGill University Health Centre and Centre Hospitalier de
l’Université de Montréal research center (MP-37-2022-8003).
Available data are retrospective data obtained from patients,
who gave their informed consent prior to their transplantation
for the use of their data for retrospective analyses. All data will
be handled in accordance with the corresponding data protection
regulations, that is, the European General Data Protection
Regulation and the Personal Information Protection and
Electronic Documents Act, respectively. Data access was given
to clinicians after deidentification only. Prior to the use of data
for CPM training, data were in addition pseudonymized to
minimize any eventual reidentification risk. There were neither
specific compensations nor benefits provided to patients by the
NephroCAGE consortium for the use of their data. We use
retrospective data, which were gathered during routine care.

NephroCAGE Data Set
Table 1 provides an overview of the NephroCAGE data set,
which consists of more than 8000 transplant patient cases across
the past 2 decades with an average age of 51.7 years.
Approximately two-thirds of the transplanted patients in our
data set are male and one-third are female patients, which aligns
with the sex distribution known from related studies [25]. Table
2 provides a summary of available categories of transplant data
in our NephroCAGE data set.

Data of transplant patients resides in individual hospital
information systems (HIS), for example, laboratory information
management system, digital pathology system, or patient
management system. For example, patient data are collected
during dialysis, at transplantation, and for each of the individual
follow-up visits after successful transplantation. Before we can
use such data for training of CPMs, each clinical site needs to
extract relevant data from their internal source systems and
transform them into the common NephroCAGE data schema
[26]. Some of the clinical transplant centers have already
performed extraction of data from internal sources and its
harmonization to a common data schema, for example, due to
the presence of a local clinical data warehouse. As a result, local
efforts for extraction and harmonization of data are reduced at
these sites. Extraction and harmonization of data should be
automated to establish a reproducible process to allow the
continuous integration of new transplant data into the
NephroCAGE data set. Thus, the NephroCAGE data set can
also be used for answering future research questions in the
clinical domain nephrology.

In the NephroCAGE consortium, we have conducted the
following steps to make transplant data available for
development of CPMs. All clinical sites defined a study protocol
and applied for approval by their individual institutional review
boards. It involved the detailed description of required data
attributes and what kind of algorithm and models will be
implemented on the data, for example, the following details
were provided: the goal of the project, research hypotheses,
patient cohort description, list of variables, incorporated data
protection regulations, exclusion criteria, and methods in
particular details about the incorporated AI methods and epitope
matching algorithms.

Each clinical transplant center has to identify and extract
relevant transplant data from their local HIS. Figure 2 depicts
the involved process steps per category of data from top to
bottom. After data extraction and format harmonization, the
quality of retrieved data needs to be assessed by subject-matter
experts. For example, selected cases need to be checked for
inconsistencies in reported data. We will only address
inconsistencies that occurred as part of the data extraction
process. If data are confirmed to be inconsistent in the primary
system, we have to exclude the patient case from further
processing until these inconsistencies are addressed by the
clinical transplant centers. Furthermore, outliers will also be
removed from further processing.
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Table 1. Overview of the NephroCAGE data set: time period, covered years, number of patients, sex ratio, and age distribution. For MUHCa and

CHUMb only patients consented Kidney Disease Biorepository–from Birth to Adulthood with first-time kidney transplant were included.

CHUMMUHCUBCcCharitéNephroCAGE data setItems

2011-20192012-20192008-20181998-20201998-2020Period

98112323Duration
(years)

400415251047428067Patients

256 (64%):144 (36%)279 (67%):136 (33%)1606 (64%):904 (36%)2940 (62%):1802 (38%)5081 (63%):2986 (37%)
,

n (%)

52.0 (12.8)55.6 (12.4)51.9 (15.3)51.3 (14.0)51.7 (14.3)Age (years),
mean (SD)

aMUHC: McGill University Health Centre.
bCHUM: Centre Hospitalier de l’Université de Montréal.
cUBC: University of British Columbia.

Table 2. Categories of transplant data available within the NephroCAGE consortium.

Selected examplesDescriptionData category

Weight, age, sex, HLAa data, transplantation date, type of dialysis, time on
dialysis, number of transplantations, delayed graft function, cold ischemia

time, death date, DSAb, and MFIc of DSA

Measurements of patient data for transplant
procedure

Recipient data

Weight, age, sex, and HLA dataMeasurements of donor data for transplant
procedure

Donor data

Creatinine, proteinuria (ratio and dip stick), albumin, and CRPdLaboratory values, for example, blood and
urine

Laboratory data

Rejection diagnosis, Banff lesion scores, and Banff diagnostic categoriesMedical pathology reportPathology reports

Diagnoses, symptoms, medical history, physical examination, and written
medications

Information collected during clinical exam-
ination

Clinical notes

Encoded medication using ATCe codesInformation relevant to immunosuppressantsMedications

Admission and discharge date, blood pressure, urine volume, pulse rate,
and temperature

Details about hospitalizations and clinical
assessments

Hospitalization data

Weight, blood pressure, urine volume, pulse rate, temperature, and DSADetails acquired during regular follow-upsFollow-up data

aHLA: human leukocyte antigen.
bDSA: donor-Specific antibodies.
cMFI: mean fluorescence intensity.
dCRP: C-reactive protein.
eATC: anatomical therapeutic chemical classification.
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Figure 2. Selected process steps involved in extraction and harmonization of data from NephroCAGE transplant centers to form the NephroCAGE
data set. HLA: human leukocyte antigen.

Improving the Kidney Transplantation Process
Figure 3 outlines selected clinical steps in the traditional kidney
transplantation process: pre- and posttransplant. If a new organ
becomes available via organ donation, its specifics are added
to a transplant registry (A1), compatibility checks are conducted
(A2), for example, blood group, HLA compatibility, and an
allocation decision is taken incorporating donor and recipient
specifics (A3). While the organ is retrieved from the donor and
transported to the transplant center of the recipient (A4), the
recipient is prepared for transplantation (A5). After surgery, the
function of the donor organ is closely monitored incorporating
common laboratory values (B1) and required medication is set
up (B2). After a period of recovery, the patient’s release from

the hospital is possible, and rehabilitation can start (B3). Regular
follow-up appointments for monitoring of kidney function are
required to identify eventual risks for the patient and the graft
as early as possible (B4).

We will incorporate B cell and T cell epitope matching for
donors and recipients as well as our CPMs to provide new
insight for clinicians to decide on a donor kidney allocation in
steps A2 and A3. If the decision is made for transplantation,
the data from surgery and the recipient’s lab data from the
hospital stay will be used as input for the CPMs design in steps
B1 and B2. Thus, our CPMs can help to provide patient-specific
risk scores to clinicians, for example, to adjust
immunosuppressant medication accordingly, and improves
continuous posttransplant patient monitoring in step B4.

Figure 3. Top: selected clinical process steps taken pretransplant. NephroCAGE aims to enhance the current compatibility assessment between donor
and recipient by incorporating genetic testing providing the foundation for advanced organ allocation to minimize the risk of incompatibility of human
leukocyte antigen between donor and recipient before organ allocation. Bottom: posttransplant, the function of the graft will be monitored continuously.
Comparing data with historical references using the NephroCAGE CPMs enables the definition of a patient-specific risk score to develop clinical end
points of interest. As a result, medication and follow-up appointments can be adapted to allow fine-grained monitoring by clinicians. CPM: clinical
prediction model.
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Molecular-Genetic Matching
Recently, several algorithms to predict molecular HLA
compatibility have been proposed. These algorithms model
different immunological pathways of allorecognition. Eplet
matching translates HLAs into a set of conformational epitopes,
toward which the recipient may form HLA antibodies based on
the absence of a corresponding self-epitope [16,17,27,28].
Activation of B cells via conformational epitopes is known to
require substantial T cell activation. The model provided by
PIRCHE predicts linear T cell epitopes, that may be targeted
by the hypervariable T cell receptors. Thus, a combination of
specific methods has been shown to further improve
histocompatibility prediction [29]. Following this strategy,
NephroCAGE aims to combine molecular antibody and T cell
epitope matching in a CPM. We aim to implement the molecular
matching algorithm as a cloud-based software as a service
(SaaS) due to high requirements for storage and computing
hardware. The use of a SaaS solution allows flexible control of
service quality and user experience. However, submitting genetic
data to the SaaS provider may cause conflicts with privacy
regulation dependent on local legislation.

Within the NephroCAGE consortium, we aim to develop an
open-source command line client for anonymization of HLA
data of recipients and donors. For computing the molecular
matching scores for donor-recipient pairs, common strategies
reducing the resolution of shared information, for example,
binning or shuffling, are not applicable given the requirement
to obtain exact in silico test results. Therefore, the accurate
donor-recipient pair HLA typing will be supplemented by
obfuscated HLA data sets. This process considers HLA
domain-specific information about haplotype and allele
frequencies complicating the identification of individuals in the
transmitted data set for the service provider and potential
intruders. The molecular matching scores will be correlated to
transplant outcome compared to results shown in the literature.
Considering these findings as a baseline, we will validate
modifications to the prediction pipeline, including a peptide
cleavage prediction model.

Using ML for CPMs
Various related work showed that AI approaches based on
medical input data can result in accurate and robust statistical
models to predict patient outcomes [30-34]. For example,
supervised tree-based ML algorithms, for example, RF and
Extreme Gradient Boosting, have shown promising results for
classification tasks for posttransplant risks, for example, for
graft failure, patient survival, or graft loss within a certain time
period [35-40]. However, most of the existing approaches were
research-driven and had only limited access to real-world
medical data for their work, for example, using the Scientific
Registry of Transplant Recipients data set [41]. Loupy et al [42]
developed a risk score for kidney transplant recipients in context
of a multicenter study making use of multivariable Cox
regression analysis to predict graft loss in patients. Among
others, they incorporated the following features: estimated
glomerular filtration rate, proteinuria, histology, and HLA
antibody [42]. Furthermore, recently advanced approaches based
on neural networks making use of large proteomic databases

occurred for assessment of immunogenicity and probability to
generate antibodies [27,43,44].

From a clinical perspective, NephroCAGE aims to prevent the
occurrence of adverse posttransplant end points, for example,
loss of function, graft failure, and patient death. Nowadays,
regular monitoring is applied to help identifying individual risk
factors as early as possible. The use of digital patient records
in hospitals for more than a decade provides the data foundation
for our work because they form a longitudinal database of
historic patient cases, medical decisions, therapies, and disease
progression. Today, historical case data are only rarely used for
current patient care. Our research hypothesis is that the analysis
of historical cases can help to derive prognostic predictions for
the individual patient risk to reach severe clinical end points.
Based on the analysis of patient-specific parameters, a current
patient case will be assigned to a group of similar, historic
patient cases.

We will use the existing real-world data from historic patient
cases from our clinical partners as a foundation for the definition
of specific CPMs per clinical end point of interest [45,46].
Together with our clinical experts, we have defined specific
CPMs to predict selected short- and long-term posttransplant
events, for example, transplant failure and organ rejection. For
example, a CPM trained for prediction of graft failure will cover
whether this event will happen (yes or no) within 1 year
(short-term) or 5 years (long-term). Such a CPM will predict a
floating-point probability p ∈ [0,1], which will be mapped to
positive and negative outcome classes. We will minimize the
complexity of CPMs by incorporating the principle of data
economy, that is, we will only use a minimal set of clinical
parameters required to achieve a stable prediction quality.
Therefore, we will make us of automatic and manual feature
selection approaches to identify most descriptive features for
the specific end point from the provided input data set [48-50].
Among others, our CPMs will make use of the following input
parameters: recipient and donor data, laboratory values, biopsy
results, medication, hospitalization records of the recipient, and
HLA compatibility score. Recipient data include sex, weight,
height, age at transplantation, end-stage kidney disease, HLA
compatibility data, age at graft failure, cause of graft failure,
age at death, and many others. Different kinds of follow-up
data, for example, weight, and blood pressure, as well as
laboratory values, for example, serum creatinine and daily
protein-urea. In the case of kidney rejection or failure, a biopsy
is performed and analyzed by a pathologist. For interpretation
of renal allograft biopsies, Banff classifications are also available
in the NephroCAGE data set.

Once a CPM has been trained at a clinical site, it will be shared
with other clinical partners in Canada and Germany for
validation and continuous training. CPM release versions will
be packaged and deployed for execution to individual clinical
sites using Docker containers. Thus, comparable small CPMs
are exchanged whilst sensitive transplant data do not leave their
protected clinical sites.

The current clinical transplantation process outlined in Figure
3 depicts multiple steps where prognostic predictions provided
by NephroCAGE CPMs can support clinicians. In the following,
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we distinguish between pre- and posttransplant use of
NephroCAGE CPMs: (1) pretransplant: the use of CPMs prior
to transplantation can support more advanced genetic matching
of donor and recipients and provide helpful insights for organ
allocation; and (2) posttransplant: after transplantation CPMs
can also incorporate patient-specific details on the graft function,
for example, by including the latest prognosis, which provides
a more specific view on the graft. We will focus on binary
classifiers predicting short-term (1 year) and long-term (up to
8 years) outcomes post transplantation.

Patient-Specific Risk Score
The use of patient-specific risk scores is well known in
medicine, for example, Glasgow Coma Scale, acute physiology
and chronic health evaluation, and sepsis-related organ failure
assessment for intensive care patients [51-53]. Risk scores are
often used to stratify patients at risk or to predict selected aspects
for patient care. They are often designed to use multiple values,
for example, latest observational and laboratory values, and
combine them toward a single numeric value for a selected
clinical outcome. When a patient has a follow-up appointment
or encounters any complication, latest data can be incorporated
to update the patient-specific risk score.

We aim to define a patient-specific risk score for selected
posttransplant events to provide additional insights for
nephrologists during posttransplant care. The risk score is a
low-dimensional metric representing the overall risk of
developing posttransplant complications and will contribute to
steps B1, B2, and B4 of the clinical process outlined in Figure
3. It will be calculated by combining the outcome of multiple
CPMs and additional patient-specific parameters into a single
clinical parameter. Thus, it can support clinicians in
continuously monitoring selected kidney function parameters
or initiating adequate action as early as possible. Based on the
risk score, we will be able to classify patients into low-,
medium-, and high-risk patients comparable to a traffic-light

schema. Patients classified as high-risk patients will require
increased systematic monitoring to prevent complications as
early as possible, whereas patients classified as low-risk patients
are not expected to develop severe events in the near future.
This helps to use the available clinical workforce more
efficiently, especially in times of a shortage of skilled labor.

NephroCAGE FLI
Figure 4 depicts the building blocks of the NephroCAGE FLI,
that is, from bottom to top: local transplant data accessed by
local FLI runtimes, a federation layer for exchange of CPMs
and data, as well as AI-based model making use of the
NephroCAGE FLI to support clinicians in gaining medical
insights. Each NephroCAGE clinical partner will join the
NephroCAGE FLI by installing and configuring a local
NephroCAGE FLI runtime environment on a dedicated host.
After transplant data have been extracted from local clinical
systems and harmonized, the host running the local FLI runtime
environment is granted access to the data. Afterwards, the
training of CPMs can be performed on the local data set. Once
a stable CPM version becomes available, it will be released for
sharing between partners using the NephroCAGE FLI. As a
result, pretrained CPMs can be exchanged via the NephroCAGE
FLI to facilitate model training even across country borders.

We will use DLT such as an Ethereum blockchain network to
have decentralized storage for communicating model updates
and code between clinical transplant centers without the need
for a dedicated central authority [54]. For support of model
training, we will implement an institutional incremental learning
approach, where members retrain models one after another and
compare different collaborative learning mechanisms with each
other [23]. The aggregation of model values is well-established
for parameter-based approaches like neural networks. However,
only limited research investigates the aggregation of tree-based
or kernel-based approaches like RFs or support vector machines,
which are relevant for the NephroCAGE use cases.
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Figure 4. Building blocks of the NephroCAGE FLI. From bottom to top: individual clinical transplant centers from Germany and Canada contribute
with more than 2 decades of transplant data enriched by publicly available data, for example, population and research data. Data are only accessible
through local runtimes of the NephroCAGE FLI per clinical site, enabling training and sharing of model results whilst keeping data protected. All local
FLI runtimes are interconnected through a federation layer, for example, providing access to a data repository for sharing model code and a DLT
persistence to store transaction data. The federation layer provides harmonized data access by exposing an API, for example, for training and deployment
of AI models and site-spanning data analysis. The results of the CPMs can be assessed by subject-matter experts, for example, to derive patient-specific
risk scores for severe posttransplant risks. AI: artificial intelligence; API: app programming interface; CA: Canadian; CPM: clinical prediction model;
DE: German; DLT: distributed ledger technology; FLI: federated learning infrastructure.

Deployment and Integration Into Clinical Information
Systems
An expert-facing web app will be developed by the consortium
as clinical demonstrator. It will be designed using a
representation state transfer (REST) API, which allows
integration into existing clinical information systems, for
example, T-Base at Charité [55]. The NephroCAGE clinical
demonstrator will be used by clinicians to gain insights into
patient-specific risk scores including additional information for
prospective treatment. Therefore, selected data about individual
patients will be exchanged with the CPM to calculate the
individual probability for posttransplant risks. As a result, we
will provide our CPMs in a local deployable way, that is, the
CPMs will be executed by the clinical partners, to preserve
privacy of any kind of patient data. Furthermore, the clinical
demonstrator will serve as an evaluation platform to identify
features that can be intervened in to improve outcome.

To facilitate the integration into existing clinical IT
infrastructures, we will follow widely adopted internet protocols
(HTTP and HTTPs) and well-known software development
paradigms for the development of our CPMs and the clinical
demonstrator. Therefore, we will develop the NephroCAGE
CPMs as modular software components in Python providing
an open API to expose their provided functionality for
integration into existing software systems. Thanks to the API
of the CPMS, the incorporated programming language and
software stack remains transparent for the use of the client app.

Through the API a stable software interface describing the
required in- or output parameters is available, which will
facilitate the integration into our clinical demonstrator and other
existing clinical software systems. The REST software paradigm
guides the development of web app upon established internet
protocols [56]. Hence, RESTful APIs could be designed
independent of the existing system with which they will be
integrated, making them highly decoupled and modular. We
will make use of REST API in our CPM design because it will
build on well-established communication protocols for exchange
of messages and therefore facilitates the integration into existing
clinical IT systems. The execution environment for CPMs
requires a diverse set of software dependency to function.
Virtualization tools, such as Docker (Docker), can support the
packaging of CPM software code, automatically install required
software dependencies, and improve software deployment
reducing maintenance efforts and hospital IT staff [57]. Thus,
our CPMs will be packaged using a Docker container, which
reduces deployment and maintenance efforts per clinical site.

Results

We have received initial funding for NephroCAGE in February
2021. Data owners from all clinical transplant centers have
successfully received ethics approval for participating in the
project in 2022. The process of exploration of clinical transplant
database for variable extraction and harmonization has started
at all centers in 2022. Therefore, we have developed software
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tools to facilitate the extraction, cleansing, and harmonization
of relevant transplant data.

For the harmonization of data, we have defined the
NephroCAGE data dictionary (DD) together with all clinical
partners. The DD covers all attributes per data element, for
example, data type, valid data ranges, and harmonized
measurement unit. We have 2 types of attributes in the
NephroCAGE DD: numerical and categorical. For numerical
attributes, we have defined harmonized measurement units, for
example, creatinine in µmol/L, age in years, and weight in kg.
For categorical data, we have defined all valid categories per
attribute, for example, sexrecipient ∈{♀,♂}. Some attributes
correspond to numerical or categorial attributes depending on
the way it was measured. For example, proteinuria can be stored
as numerical attribute with the unit mg/day if it was acquired
through a 24-hour urine collection or as categorical attribute
using the set {+,++,+++} (+=low, ++=medium, +++=high) if
it was acquired using a dipstick quick test.

As of August 2023, a total of 8120 patient records have been
retrieved by all clinical partners for use in the NephroCAGE
data set as depicted in Table 1. We will calculate the molecular
epitope matching score for donors and recipients and extend
our data set by it to gain insights in formation of donor-specific
antibody formation and impact on the clinical outcome.
Subsequently, we will use the NephroCAGE data set to train
and validate CPMs for selected posttransplant clinical end
points. Locally pretrained CPMs will be retrained and validated
by clinical sites through the use of the NephroCAGE FLI. We
will focus on ensemble methods to aggregate models trained
on individual clinical sites. Setting up the NephroCAGE FLI
runtime at each clinical site requires compliance with data
compliance regulations of pertaining individual clinical sites
and geographies. Our NephroCAGE FLI will facilitate the
development of CPMs, enable continuous training at each site
without the need for pooling sensitive transplant data in a central
database or data warehouse.

Discussion

Findings on Using Sensitive Health Data for
Development of CPMs
Transplant data used to form the NephroCAGE data set—as
any patient data—are very sensitive and requires dedicated
protection measures. However, the accessibility of such data is
crucial to enable training of CPMs with high prognostic value.
Running a multinational project requiring access to data from
different geographic jurisdictions is complex, for example, due
to compliance with individual data protection regulations and
variety of data formats and semantic meaning. The
NephroCAGE consortium develops the privacy-preserving
NephroCAGE FLI to comply with the regulations of Canada
and Germany. Furthermore, the NephroCAGE data set is unique
in its size, details, and longitudinal completeness. As a result,
we believe that the NephroCAGE data set can also serve future
research as a profound foundation. For example, we plan to use
the NephroCAGE data set to analyze the impact of
demographics and health care systems on the posttransplant
outcomes in Germany and Canada.

The complexity of transplant data stems from its multiple
attributes originating from different sources. It contains
longitudinal data about clinical events typically occurring years
or decades after transplantation and comorbidities related to the
underlying disease, for example, creatinine from laboratories
and hospitalization data from HISs. Data extraction and
harmonization across partners is one of the most challenging
parts of our project, because each center has its individual IT
infrastructure to store transplant data. Due to our federated setup,
we do not make use of a central data warehouse. Therefore,
harmonizing transplant data before developing CPMs is more
crucial than in a traditional data warehouse setup. Thus, we will
perform specific data preprocessing activities, for example,
harmonizing categorical variables with the same name and units
and checking numerical variables for outliers.

We will work together with nephrologists and clinical experts
to identify clinical end points of interest as basis for CPM
development. We will start to investigate the applicability of
tree-based models and artificial neural networks as ML methods
based on our literature review, because tree-based methods
perform better on imbalanced tabular data than neural networks.
Furthermore, tree-based methods show better explainability by
providing explicit feature importance. Finally, an imbalance of
data in kidney transplantation might lead to over-fitting for the
majority classes. Consequently, we will apply resampling
methods to reduce this effect [58-60].

Genomic data for the HLA compatibility algorithm are among
the most sensitive transplant data. Therefore, we aim to
implement an anonymization client so that the HLA is not
susceptible to various privacy threats. Today, only 5 genetic
loci from HLA-A, -B, and -DR are used by Eurotransplant’s
graft allocation algorithm despite a total of 11 clinically relevant
HLA loci being associated with immunologic risk [15].
Molecular matching, such as PIRCHE, has been shown to
provide additional value to serologic HLA matching in assessing
risk of developing donor-specific HLA antibodies, thus having
the potential to improve long-term transplant outcomes.
Furthermore, donor-specific antibodies are a major factor for
rejection that deteriorate organ function and result in graft loss.
Although we will use the NephroCAGE FLI to share CPMs
between partners, still concerns remain about the privacy of
patient data in the case of backtracking the ML model coefficient
into individual patient outcomes. Therefore, we will incorporate
only deidentified data as basis for CPM training, that is,
anonymization of sensitive attributes such as follow-up visit
dates, surgery date, and birth date.

Furthermore, the prediction results of CPMs alone are not
sufficient to fully explore the reasons. Therefore, we will add
additional information to the results, which will enable clinicians
to perform informed decision-making, for example, most
important features used by the model or details about the specific
subtree the individual is assigned to. Thus, clinicians will be
enabled to assess the provided prediction and also provide
feedback about their final decision, which might be different
from the prediction. Thus, we trust that clinicians can
incorporate additional insights provided by CPMs into their
decision-making process, but still remain the final and human
decision maker responsible for clinical treatment decision.
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Limitations
We use observational retrospective data over different time
periods and different centers. For example, the majority of
transplant data contributed to the NephroCAGE data set is
provided by 1 center as outlined in Table 1. Furthermore,
transplant data from individual centers was collected across
different time periods, thus they might differ due to advances
in medical practice. This limits data integration from all centers,
including preprocessing and modeling of the data in a similar
fashion. Different times and eras of transplantation may infer
time bias in the model. Different center practices and
demographics may be challenging to interpret and might
influence the prediction of CPMs. Therefore, CPMs will show
the differential importance of features on the desired clinical
outcome. However, clinically actionable features must be
determined as certain features cannot be changed, for example,
the donor’s age. For some clinically relevant factors,
interventions must be found, and randomized controlled trials
must be established to find appropriate therapy. By diminishing
worse outcomes, training and improvement of the CPM may
change over time, resulting in inferior model performance, thus
deteriorating identifying patients at risk. All the hospitals
represent independent cohort in our federated learning setup
and hence a particular attention needs to be given in the order
of learning to be done on these data set [61].

Conclusions
We have introduced the overall goals of our German-Canadian
NephroCAGE consortium, addressing multiple challenges in
implementing latest federated learning methods to enable
privacy-preserving training of CPMs using real-world transplant
data from transplant centers in Germany and Canada. We have
highlighted the need to perform data harmonization and develop
automated data extraction pipelines per transplant center to
ensure reproducibility and scalability of the developed CPMs.
Our NephroCAGE FLI will be used for privacy-preserved
training and exchange of CPMs, which incorporate data from
various hospitals. By including molecular epitope matching into
our CPM, we aim to gain insights on donor and recipient
HLA-matching beyond the current standard of care. The goal
of our CPMs is to support clinicians by identifying severe
posttransplant risks as early as possible for individual transplant
patients. We aim to develop a clinical demonstrator, which will
be used for evaluation of CPMs in a clinical setting. The CPM
needs to be verified in randomized clinical studies and evaluated
to assess factors that can be used for treatment and modification
to improve outcomes. This will especially be achieved if more
transplant centers join the consortium and share their transplant
data via the NephroCAGE FLI.
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