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Abstract

Background: Providing Psychotherapy, particularly for youth, is a pressing challenge in the health care system. Traditional
methods are resource-intensive, and there is a need for objective benchmarks to guide therapeutic interventions. Automated
emotion detection from speech, using artificial intelligence, presents an emerging approach to address these challenges. Speech
can carry vital information about emotional states, which can be used to improve mental health care services, especially when
the person is suffering.

Objective: This study aims to develop and evaluate automated methods for detecting the intensity of emotions (anger, fear,
sadness, and happiness) in audio recordings of patients’ speech. We also demonstrate the viability of deploying the models. Our
model was validated in a previous publication by Alemu et al with limited voice samples. This follow-up study used significantly
more voice samples to validate the previous model.

Methods: We used audio recordings of patients, specifically children with high adverse childhood experience (ACE) scores;
the average ACE score was 5 or higher, at the highest risk for chronic disease and social or emotional problems; only 1 in 6 have
a score of 4 or above. The patients’ structured voice sample was collected by reading a fixed script. In total, 4 highly trained
therapists classified audio segments based on a scoring process of 4 emotions and their intensity levels for each of the 4 different
emotions. We experimented with various preprocessing methods, including denoising, voice-activity detection, and diarization.
Additionally, we explored various model architectures, including convolutional neural networks (CNNs) and transformers. We
trained emotion-specific transformer-based models and a generalized CNN-based model to predict emotion intensities.

Results: The emotion-specific transformer-based model achieved a test-set precision and recall of 86% and 79%, respectively,
for binary emotional intensity classification (high or low). In contrast, the CNN-based model, generalized to predict the intensity
of 4 different emotions, achieved test-set precision and recall of 83% for each.

Conclusions: Automated emotion detection from patients’ speech using artificial intelligence models is found to be feasible,
leading to a high level of accuracy. The transformer-based model exhibited better performance in emotion-specific detection,
while the CNN-based model showed promise in generalized emotion detection. These models can serve as valuable decision-support
tools for pediatricians and mental health providers to triage youth to appropriate levels of mental health care services.
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Introduction

Background
The mental health care delivery system of care for youth is in
crisis. The suicide rate for youths aged 10 to 24 years increased
by 62% between 2007 and 2021 [1]. There is a shortage of
trained mental health professionals, especially in low- and
middle-income countries and communities, having less than
one mental health professional per 10,000 people [2]. Training
professionals and therapists require comprehensive effort to
develop the appropriate levels of clinical skills equal to the
trauma-based severe mental health issues in these communities.
Conventional training methods, which typically involve long
durations of apprenticeship and supervision, are often
resource-intensive. The current system struggles to meet the
growing demand for mental health services, especially for
pediatric patients and youths [3]. Furthermore, evaluating the
effectiveness of therapy remains challenging, as mental health
conditions are often complex and multifaceted, and current
evaluation methods primarily rely on subjective assessments
[4].

The use of artificial intelligence (AI) in emotion detection from
audio recordings is an emerging approach to address these
challenges. Studies have shown that speech carries rich
information beyond words, including vital emotional cues and
biomarkers associated with mental health conditions [5]. This
helps in measuring the effectiveness of therapy and identifying
patients in high-risk environments, thus enabling timely
interventions. Such quantifying emotions also aids in the optimal
allocation of resources by preventing unnecessary treatments
[6].

In this paper, we present the development of a deep learning
model that classifies emotions using a 15- to 90-second voice
sample collected as part of a counseling session. Our study
focuses on audio recordings of children with significant
psychiatric symptoms partly related to high adverse childhood
experience (ACE) scores reading a fixed script. In total, 4 highly
trained therapists classified audio segments based on 1 of the
4 emotion intensity levels (none, low, medium, and high) for
each of the 4 emotions (anger, fear, happiness, and sadness).
The paper reports the development and training of the machine
learning (ML) models and discusses the implications of our
findings for the broader landscape of mental health care.

As surveyed by Koolagudi and Rao [7], speech emotion
recognition (SER) is a prevalent area of research with numerous
classification models, feature extractors, and publicly available
data sets. However, there are many limitations in the current
body of research. Many corpus of speech data are focused on

recognizing actor-simulated speech emotion, which contains
much higher emotional intensities than what is found in ordinary
speech. Additionally, many research results are based on data
sets with a limited number of speakers. For example, the
IEMOCAP data set [8] is frequently used in literature for SER
tasks. However, it comprises actor-simulated emotional
utterances from only 10 different speakers. It is also noteworthy
that classification of the intensity of emotion found in speech
is much more limited. The RAVDESS data set is one of a few
publicly available data sets containing actor-simulated audio
recordings labeled with emotion intensity (either low or high)
[9]. The data sets found in the literature are also very short in
duration. The audio clips in IEMOCAP and RAVDESS are both
segmented at the utterance level, such that one audio clip only
contains a handful of spoken words and is usually only 1-2
seconds in duration.

Numerous model architectures have been used for SER tasks.
Zhang et al [10] developed a fully convolutional network (FCN)
to classify the emotion type from audio recordings in the
IEMOCAP data set [8]. They used an Alexnet-based [11]
convolutional neural network (CNN) for feature extraction and
a soft-attention–based classifier, resulting in a class-weighted
accuracy of around 68%. This approach was appealing to us
due to its insensitivity to input length the FCN is able to handle
inputs of different sizes without the need to crop or divide inputs
into multiple segments.

Participants
Participants were recruited from 3 mental health care centers
that focused primarily on children and adolescents from
low-income communities. The participants receive mental health
services paid for by Medicaid, the Children’s Health Institute
Program, and the Department of Children and Family Services.
The participants are children aged 5-18 years and those referred
for behavioral health services through schools, DJJ, and child
protective agencies.

Methods

Data Exploration and Processing
The data set used for this project was gathered as part of the
National Science Foundation Small Business Innovation
Research Phase I and Phase II study. It encompassed 1055 audio
recordings obtained during therapy sessions with children who
are receiving mental health services and who have been
diagnosed with at least 1 DSM (Diagnostic and Statistical
Manual of Mental Disorders) condition. The recordings focused
on the children reading scripted passages, though the textual
content itself was not a central aspect of the project. Each audio
recording was meticulously annotated with an emotional
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intensity level (none, low, medium, or high) for 4 emotions,
namely anger, fear, sadness, and happiness. To ensure
robustness, 4 different labelers were involved in this annotation
process for each recording, and the attribution of each labeler
was recorded.

Throughout the exploratory phase, several noteworthy
observations were made regarding the data. One key finding
was that meaningful disagreements among the labelers were
evident due to multiple labelers providing annotations for most
recordings. Additionally, the recordings exhibited a degree of
noise, with varying background noise levels, the occasional
presence of multiple speakers (such as the therapist themselves),
and instances where the speaker sounded distant from the
recording device. Moreover, the duration of the recordings
varied significantly, ranging from as short as 2 seconds to over
6 minutes. Though the majority fell within the 30-90 seconds
range, this presented a notable difference compared to typical
data sets found in the existing literature.

A contributing factor to these challenges can be attributed to
the data collection process, which took place in the natural
environments of the patients, such as their schools or homes.
While this approach offers valuable insights, it also introduced
certain complexities that needed to be addressed during data
processing and analysis.

Data Preprocessing

Label Disagreement
Various methodologies were used to address the discrepancies
among labelers in handling emotion intensities. First, we
transitioned from a 4-class classification to a binary
classification, distinguishing between low and high emotion
intensities. To achieve this, we combined the categories “none”
and “low” to represent the binary class 0, and similarly, we
grouped “medium” and “high” for the binary class. Additionally,
we trained 2 distinct types of models: one where the mode
predictions across the 4 labelers served as the “ground truth,”
and another where we developed individual models for each
labeler. This approach allowed us to explore different
perspectives and optimize model performance.

Denoising
As stated earlier, some of the voice samples were noisy despite
the therapist’s effort to manage the background noise. Although
some of the models used have noise resistance capabilities, it
was often not sufficient for the models to achieve good results.
Therefore, data set denoising had to be carried out. In recent
years, neural network denoising has become the state-of-the-art
approach to solving speech denoising. Therefore, one of the
latest works [3] from Facebook was applied. It uses Demucs
architecture, which was originally developed for the task of
music source separation [12].

Voice Activity Detection
The data set’s recordings include extended periods of silence
and background noise with no speech. When training models,
especially those with attention layers, using extensive portions
of audio from silent regions leads to less effective results, and
the training process takes longer. This issue is partly influenced

by participants experiencing severe symptoms of depression or
anxiety, requiring substantial support to finish the reading tasks.

To address this, we conducted an experiment where we applied
a voice activity detection (VAD) algorithm to identify and
remove sections of the audio files where no active speaker was
present. For this purpose, we used Silero models to extract these
voice fragments [13].

Diarization
Another issue with the data set is the presence of various voices
besides those of children, such as therapists asking questions,
among others. The inclusion of these additional voices can lead
the model to focus on irrelevant parts of the input data, resulting
in poorer performance. To address this problem, we conducted
experiments involving a diarization algorithm to process the
data, retaining only the segments with children’s voices.
Diarization models, however, cannot definitively identify child
speakers. Nevertheless, in recordings where strangers speak,
children’s voices generally dominate in terms of time, making
it possible to distinguish and isolate them. It is important to
mention that certain recordings experienced high levels of noise,
leading to instances where the diarization algorithm detected 3
or more speakers, particularly in shorter audio recordings.
Consequently, we decided to filter out such instances from our
data set.

Modeling

Fully Convolutional Networks
In recent years, FCNs have emerged as a favored method for
speech-emotion recognition due to their modest parameter count
and ability to handle variable-length inputs. In this study, we
developed FCN models based on the work of [10].

To begin, we computed the Mel spectrogram, which captures
both frequency and intensity variations in the audio clip over
time, representing it as a single image per recording. The
advantage of using FCNs is that they can directly process these
variable-length images without the need for resizing or cropping.
Longer audio clips produce larger spectrograms, but the FCN
efficiently handles them.

Subsequently, the image was fed through a CNN to extract
meaningful features from the spectrogram, facilitating emotion
intensity classification. Like how individual consonant and
vowel sounds can be discerned from inspecting the spectrogram,
we posit that comparable features exist for emotion intensity
identification.

Finally, the outputs of the CNN are passed through one or more
parallel output blocks, each comprising a 1×1 convolution step
followed by a global-average pooling layer. This step reduces
the dimensionality to the number of emotion intensity classes,
independent of the input size. Consequently, classification is
achieved without the need for dense layers with fixed
dimensions.

We performed fine-tuning on 2 pretrained CNN backbones:
Alexnet [11] and Googlenet [14]. Both these architectures are
well-known CNNs that were pretrained on ImageNet and have
been widely used for various image classification tasks [15,16].
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We chose Alexnet for its compact size and previous success in
similar speech-emotion recognition tasks in the literature. On
the other hand, Googlenet was selected for its use of “inception
blocks,” which we believed might offer advantages with its
convolutional filters of different sizes. To adapt these pretrained
networks, we worked with their Pytorch implementations.

Our experimentation explored 2 output layer structures:
“single-head” and “multi-head.” The models with a single output
block enabled the prediction of emotion intensity for one specific
emotion, while the multi-head model consisted of 4 separate
output blocks, one for each emotion. Although a multi-head
model would be more convenient, we aimed to investigate
whether there were any performance differences in learning
features for classifying a single emotion compared to learning
features that could classify all 4 emotions simultaneously.

Speechbrain
All models described earlier require a Mel spectrogram as an
input. However, this speech representation has disadvantages,
such as loss of information, complexity, etc. It also requires
additional model capacity to be trained to extract useful
information for each specific task. That is why, in recent times,
self-supervised models for speech processing have gained a lot
of attention. As can be deduced by its name, these models are
trained in a self-supervised fashion like popular Natural
Language Processing models such as BERT. The most popular
ones are Hubert [17] and Wav2Vec 2.0 [18]. Both models have
convolution layers in the beginning and Transformer layers
after the convolution layers. The high-level pipeline is similar:
the model accepts raw input audio and is trained to predict the
cluster number for each audio chunk.

There are, however, some cluster refinement differences between
the models. This enables them to extract phoneme-like structures
in audio data and helps to extract more useful information,
especially for speech-processing tasks. It is important to note
that the model has some denoising capabilities by design, as
this pipeline resembles the one used to train Automatic speech
recognition models. The major difference is that instead of
phonemes, we have cluster numbers. These types of models are
implemented in a framework called Speech-the brain. In this
work, we used architecture Wav2Vec 2.0. To apply this model
to our task, its’ architecture needed to be slightly modified and
fine-tuned. We added a final head as a multilayer perceptron
layer after the transformer modules. The model was trained in
the usual classification problem manner with MSE loss. The
gradient was backpropagated to all Wav2Vec2.0 layers. Each
model was trained for 30 epochs. The multilayer perceptron
layer has 2 outputs, and the model is trained to differentiate
whether an emotion appears in the input or not. The setup with
classifying all emotions at once was also attempted but gave
poor results compared to a binary classifier.

Ethical Considerations
The study received ethical board approval (protocol
#21-TQIN-101) for a multisite pilot involving children and
adolescents. We will receive written and informed consent from
participants. The activities for patients enrolled in the study
include data collected using multiple surveys and a voice

sample. The surveys include structured and unstructured voice
samples based on a reading selected by the research team. The
ethical board approves all the study contents.

Data Collection
ThinkQuality, TQI’s Phone App, was used to collect voice
samples from youth receiving mental health and family
preservation services at the point of care. The data collection
process includes concurrently administering a scientifically
validated survey. The patient’s emotional disorder severity is
confirmed based on the scores of the Symptoms and Functioning
Severity Scale (SFSS), ACE, and Patient Health Questionnaire-9
(PHQ-9), the patient’s diagnosis, and other clinical information
from the patient’s treatment history. For every voice sample
collected, the pilot has a diagnosis or multiple, current
procedural terminology code, and the therapist’s clinical input.
These data serve to categorize voice sample data into distinct
categories and train voice-based ML algorithms to distinguish
children in need and at high risk. The innovation is focused on
families with low socioeconomic status, in which ACEs are
common.

Data are collected by therapists (n=35). An Android mobile app
collects speech samples, SFSS, PHQ-9, and ACE scale
responses. Each therapist receives a 3 to 5-hour in-person
training about app installation and access, data (SFSS, voice
sample) collection using the app, compliance and parameters,
the process of the reward program, communication, and
real-time technical support. Data are collected from patients
during mental health or other family-based intervention visits
weekly or biweekly, based on the intensity of the psychiatric
symptoms. Visits occur in a suitable (private) location at home
(including foster and group homes) or school as part of a state’s
commitment to reduce barriers to services and easily access
services. Data are collected partially web-based during the
service shift secondary to the COVID-19 pandemic.

To elicit speech for recording and analysis, patients are asked
to choose from a subset of readings. Patients’ reading is recorded
for up to 90 seconds—a clock feature in the app signals when
the time is up. In general, if the child’s reading label is like the
grade, the reading could be completed in less than 50 seconds.
Voice samples are stored in a separate deidentified database,
allowing 3 to 4 psychologists to label the voice sample
independently. SFSS, PHQ-9, and ACE responses are collected
using the same app. The app scores the surveys immediately
and makes the results available to the therapist to share with
their patients if it is clinically appropriate; real-time data
availability is intended to close the gap in transparency,
accountability, and family engagement.

Results

Overview
The primary goal of this research was to investigate diverse
data preprocessing and modeling approaches in order to identify
fruitful opportunities. As a result, significant dedication was
put into testing various combinations within our suggested
methodology to discover promising options. To facilitate this
process, we extensively used the experiment tracking platform
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called Biases. It enabled us to store training results and test
metrics, and save potential model candidates for future
deployment on the web app. While most models underwent 10
epochs of training with a learning rate of 5e-5, a few were
terminated earlier due to the validation loss plateauing without
any additional performance gains.

Evaluation Metrics
The evaluation process for the FCN models involved computing
metrics using a 15% hold-out test set. Conversely, for the speech
brain-based models, metrics were computed using a 10%
hold-out test set. Since the task at hand was a binary
classification problem, we used precision and recall as our
evaluation metrics. The primary objective was to identify a
model capable of accurately detecting high intensity of emotion
within audio files while keeping false positives to a minimum.

Denoising
First, the denoising effects were evaluated by initially applying
a pretrained denoiser model to the unmodified source audio

files as a preprocessing step. Subsequently, 3 pairs of models
were trained, each corresponding to 1 of 3 emotions (anger,
fear, and sadness). Each pair included 1 model trained on the
original audio files and another model trained on the audio files
with the denoiser applied.

To maintain consistency, only the labels from a single labeler
(Labeler 1) were used, given their extensive number of labeled
samples. Additionally, a similar pair was trained using the model
with all 4 emotion heads. The results of these experiments can
be found in Table 1.

The outcomes revealed that denoising alone led to a slight
improvement in the Anger emotion, but resulted in a marginal
or more significant performance decrease for the FCN model
in the other emotions. Moreover, the FCN model equipped with
4 output heads exhibited worse performance when denoising
was added.

Table 1. Fully convolutional network model results with and without denoiser for audio samples labeled by Labeler 1.

RecallPrecisionEmotion and denoise

Anger

0.5130.612No

0.6670.656Yes

Fear

0.7690.741No

0.7560.717Yes

Sadness

0.8010.801No

0.7370.667Yes

All 4

0.8330.833No

0.8010.806Yes

VAD
The impact of VAD on the results was analyzed through a series
of experiments. Initially, the unmodified source audio files
underwent preprocessing with a pretrained VAD model. In total,
3 sets of emotion-specific models were then trained, both with

and without the application of VAD. Additionally, a model with
all 4 emotion heads was trained using VAD. The outcomes are
presented in Table 2. It was observed that applying VAD led
to negligible or marginal enhancements in the single-emotion
FCN models’ performance while causing a decline in the
performance of the 4-emotion FCN model.

JMIR Res Protoc 2023 | vol. 12 | e51912 | p. 5https://www.researchprotocols.org/2023/1/e51912
(page number not for citation purposes)

Caulley et alJMIR RESEARCH PROTOCOLS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Table 2. Fully convolutional network model results with and without VADa for audio samples labeled by Labeler 1.

RecallPrecisionEmotion and VAD

Anger

0.5130.612No

0.6090.627Yes

Fear

0.7690.741No

0.7630.729Yes

Sadness

0.8010.801No

0.8080.808Yes

All 4

0.8330.833No

0.7930.814Yes

aVAD: voice activity detection.

Denoising+VAD
The effects of preprocessing with both the denoiser and VAD
were similarly compared. In this case, the unmodified source
audio files first had the denoiser applied, followed by VAD.
Then, the same 3 pairs of models, one per emotion, were trained,
as well as the pair using all 4 emotion heads. The results are
shown in Table 3.

The effects of preprocessing with the denoiser and VAD were
also compared against a baseline using only VAD (rather than
a baseline without any preprocessing). This set of models was
trained using the speech brain-based model. The results are
shown in Table 4. As we can see, in some cases, denoising
boosts the quality, but in some cases, it decreases quality. In
cases where quality decreased, the primary cause was extremely
noisy data, and the denoiser overcompensated.

Table 3. Fully convolutional network model results with and without both denoiser and VADa combined for audio samples labeled by Labeler 1.

RecallPrecisionEmotion and denoise+VAD

Anger

0.5130.612No

0.5500.651Yes

Fear

0.7690.741No

0.7760.761Yes

Sadness

0.8010.801No

0.7560.711Yes

All 4

0.8330.833No

0.7920.803Yes

aVAD: voice activity detection.
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Table 4. Speechbrain model results with and without denoiser for audio samples with voice activity detection applied and labeled by Labeler 1.

RecallPrecisionEmotion and denoise

Anger

0.7340.777No

0.7650.783Yes

Fear

0.820.811No

0.8450.812Yes

Sadness

0.810.781No

0.7940.863Yes

Denoising+VAD+Diarization
Experiments with diarization were also conducted. It can be
observed that for a particular labeler, a slight decrease in
performance occurred, which indicates overwork. The results
are shown in Table S5 in Multimedia Appendix 1.

Alexnet Versus Googlenet
Another comparison we were interested in is how different CNN
architectures performed on this data set. Alexnet and Googlenet
are both powerful backbones used in similar image recognition
tasks. To compare the two, we trained 2 models—1 pair with
only a single prediction head (for the fear emotion) while the
other pair had 4 prediction heads, 1 for each emotion. These
models were trained without any preprocessing steps applied
to the audio files. Unfortunately, not many experiments could
be run on this combination due to the long training time required
for Googlenet (10-15 times slower than Alexnet). Overall,
Googlenet performed worse in both cases than Alexnet. Part of
this could be attributed to a much trickier training process for
Googlenet—it was difficult to dial the learning rate to prevent
the model from over-fitting after only 1-2 epochs. The results
are shown in Table S6 in Multimedia Appendix 2.

Single- and Multi-Head Models
In our study, we conducted a comparison between models
equipped with single and multiple output heads. To achieve
this, we trained a model using 4 output heads to predict emotion
intensity for 4 emotions. This training used data from a single
labeler. Subsequently, we used the same labeled data to train 4
separate models, each with only 1 output head dedicated to
predicting a specific emotion. Both Labeler 1 and Labeler 3
data sets were used for this purpose.

Although direct comparison of the results proved challenging,
they provided valuable insights. The model with multiple output
heads demonstrated reasonable performance and merits further
exploration. It is possible that optimizing the model with
multiple emotion heads simultaneously may lead to intermediate

features that are more generalized, enhancing the prediction of
various emotions. For detailed results, please refer to Table S7
in Multimedia Appendix 3.

One Model per Emotion
In the preceding sections, the focus was solely on models trained
with data from individual speakers. However, it is more practical
to use 1 model per emotion during the inference process. To
explore this approach, several experiments were conducted, and
the outcomes are presented in Table S8 in Multimedia Appendix
4. For these experiments, all 3 preprocessing techniques
(denoising, VAD, and diarization) were applied.

The results obtained from this approach were not as promising
as those achieved with separate labelers, mainly due to the lack
of consensus among data labelers. This was further confirmed
by computing the Krippendorf coefficient for various subsets
of labelers, as shown in Table S1 in Multimedia Appendix 5.
The majority of combinations yielded results close to zero,
indicating a significant lack of agreement among speakers.
However, it is worth noting that for the emotion “sadness,”
some combinations did achieve a score of 0.45, which is
considered acceptable.

FCN Versus Speechbrain
It may also be useful to compare the differences in model
architectures. For this experiment, models were trained on a
per-labeler, per-emotion basis using both the Alexnet-based
FCN model and the Speechbrain model. The preprocessing was
consistent in this comparison, with both models using the data
set with denoising and VAD applied. Attention-based models
like Wav2vec 2.0 can determine temporal relationships,
dependencies, and correlations that are not linked with a local
aspect like CNN or sequential like an RNN. The wav2vec 2.0
model can capture long-term temporal dependencies from time
stamp complexity. Since the audio files contain multiple
emotions and are quite long, this explains why wav2vec 2.0
outperforms the FCN-based model. The results are shown in
Table 5.
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Table 5. Comparing FCNa and Speechbrain models using data with denoiser, and voice activity detection applied.

Recall (Speechbrain)Recall (FCN)Precision (Speechbrain)Precision (FCN)Labeler and emotion

Labeler 1

0.7650.6600.7820.651Anger

0.8440.7760.8110.761Fear

0.7940.7560.8620.711Sadness

Labeler 3

0.8230.6900.8180.670Anger

0.7850.6710.8110.715Fear

0.8460.7230.8450.723Sadness

Labeler 2

0.8320.9660.8320.934Anger

0.8530.6850.8530.677Fear

0.8820.6850.8850.684Sadness

Labeler 4

0.8420.7390.8370.742Anger

0.7550.6400.7810.658Fear

0.7630.8020.8350.841Sadness

aFCN: fully convolutional network.

Discussion

Principal Findings
In this study, we developed a deep learning model to classify
emotions from voice samples collected during the psychotherapy
session. Audio recordings from a clinical population have been
considered a critical step in leveraging AI-driven tools for
mental health care. These models can serve as valuable
decision-support tools for pediatricians and mental health
providers to triage youth to appropriate levels of mental health
care services. The ability to accurately quantify emotional states
can potentially improve disparities in treatment outcomes,
especially for youth from low-income communities and
marginalized communities. Our model demonstrated proficiency
in predicting therapists’ intensity-based labels for different
emotions.

There are several implications and potential applications of this
proposed model. First, the ability to objectively measure
emotional states could complement therapists’ subjective
assessments, leading to more precise and data-driven clinical
decision-making in therapeutic interventions. In addition,
quantifying emotions can contribute to streamlining resource
allocation in mental health care, ensuring that individuals in
critical need receive timely attention; the crisis in youth mental
health and projected shortage of qualified mental health
providers may require AI-driven solutions to effectively manage
resources by focusing on the neediest.

However, the implementation of such models should regard
ethical considerations and adoption. Patient privacy and data
security must be ensured. Moreover, as AI can significantly
augment the capabilities of professionals, it should not be

introduced as a replacement for human connection, which is at
the root of effective psychotherapeutic endeavors; instead, it
should be used as a supporting tool that enhances therapists’
abilities to make informed decisions.

Limitations
The study presents several limitations. The quality of speech
data, including background noise and speech disorders,
continues to affect the accuracy and reliability of the ML model.
Second, the sample population may not be representative of the
greater US population, limiting the generalizability of findings;
participants have at least 1 DSM diagnosis. There are very
limited voice samples of happiness. Finally, legal and regulatory
considerations, including privacy rules and compliance with
regulations, must be reviewed based on the state and
jurisdictions and may limit the use of the algorithm. The latter
must be considered to protect participants and ensure the lawful
use of data [19].

Implication and Future Work
We discovered that many of our models, including our best one,
hit some kind of predictive ceiling. We believe data quality may
be the limiting factor in this case. Since the data labels apply
to long audio segments, information density is relatively low.
It is difficult to know whether a specific utterance in a long
recording caused a labeler to label the audio anger as high or if
the overall tone of the speaker throughout the recording
indicated a high anger level. One valuable area for future work
would be to break down the audio clips into smaller chunks,
perhaps even to the sentence or utterance level. Having more
granular labels would enable their data scientists to incorporate
commonly used data sets found in literature as additional
training samples. We have started breaking down the length of
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the audio to 15 seconds and labeling them; accordingly, we plan
to publish the result of this process.

Another area of potential future work is to work on model
interpretability. Tools like saliency maps are commonly used
in vision problems to understand better the features extracted
at intermediate model layers. Trying similar techniques to help
diagnose the current model limitations would be interesting.
Perhaps this could be extended to reconstructing the relevant
audio segments from the salient portions of the spectrogram
and see if the labelers agree with what the model picks up on.

Conclusions
The children and adolescent system of care remains volatile
despite the end of the COVID-19 pandemic that precipitated

the current crisis; rural and intercity locations have taken the
brunt of symptom severity and lack of access. The integration
of digital mental health innovations is crucial in addressing the
ongoing mental health crisis; these technologies need to fit into
the existing workflow of medical providers and therapists.
Speech-based digital biomarkers that can be collected quickly
via a user-friendly interface hold promise for identifying
emotional distress and functional impairments in this population.
This study is one such technology that contributes to the broader
digital health transformation and paves the way for proactive
and collaborative mental health care services to improve
treatment outcomes and reduce disparities for individuals from
low-income communities and marginalized groups.
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