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Abstract

Background: Artificial intelligence (AI)–powered digital therapies that detect methamphetamine cravings via consumer devices
have the potential to reduce health care disparities by providing remote and accessible care solutions to communities with limited
care solutions, such as Native Hawaiian, Filipino, and Pacific Islander communities. However, Native Hawaiian, Filipino, and
Pacific Islander communities are understudied with respect to digital therapeutics and AI health sensing despite using technology
at the same rates as other racial groups.

Objective: In this study, we aimed to understand the feasibility of continuous remote digital monitoring and ecological momentary
assessments in Native Hawaiian, Filipino, and Pacific Islander communities in Hawaii by curating a novel data set of longitudinal
Fitbit (Fitbit Inc) biosignals with the corresponding craving and substance use labels. We also aimed to develop personalized AI
models that predict methamphetamine craving events in real time using wearable sensor data.

Methods: We will develop personalized AI and machine learning models for methamphetamine use and craving prediction in
40 individuals from Native Hawaiian, Filipino, and Pacific Islander communities by curating a novel data set of real-time Fitbit
biosensor readings and the corresponding participant annotations (ie, raw self-reported substance use data) of their methamphetamine
use and cravings. In the process of collecting this data set, we will gain insights into cultural and other human factors that can
challenge the proper acquisition of precise annotations. With the resulting data set, we will use self-supervised learning AI
approaches, which are a new family of machine learning methods that allows a neural network to be trained without labels by
being optimized to make predictions about the data. The inputs to the proposed AI models are Fitbit biosensor readings, and the
outputs are predictions of methamphetamine use or craving. This paradigm is gaining increased attention in AI for health care.

Results: To date, more than 40 individuals have expressed interest in participating in the study, and we have successfully
recruited our first 5 participants with minimal logistical challenges and proper compliance. Several logistical challenges that the
research team has encountered so far and the related implications are discussed.

Conclusions: We expect to develop models that significantly outperform traditional supervised methods by finetuning according
to the data of a participant. Such methods will enable AI solutions that work with the limited data available from Native Hawaiian,
Filipino, and Pacific Islander populations and that are inherently unbiased owing to their personalized nature. Such models can
support future AI-powered digital therapeutics for substance abuse.
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Introduction

Background
Methamphetamine abuse is highly prevalent in Hawaii,
especially among Indigenous Pacific Peoples [1]. Since the
1980s, Hawaii has been considered the methamphetamine capital
of the United States. Data from the Pacific Health Analytics
Collaborative show that from 2015 to 2018, in total, 1.5% of
Hawaiian residents used methamphetamine annually [2]. This
was more than twice the national rate of 0.6%. According to
the Bureau of Alcohol, Tobacco, Firearms, and Explosives,
71% of all drug cases in Hawaii were related to
methamphetamine [3].  There are major
methamphetamine-related disparities between Native Hawaiian,
Filipino, and Pacific Islander individuals and people of other
races in Hawaii, with Native Hawaiian, Filipino, and Pacific
Islander individuals exhibiting elevated rates of illicit substance
abuse [4]. According to the Centers for Disease Control and
Prevention, Native Hawaiian and Pacific Islander high school
students exhibited lifetime methamphetamine use of 7.7% versus
3.7% in White students, 2.7% in Black students, 3.1% in Asian
students, and 5.7% in Hispanic and Latino students, and these
disparities continued into adulthood [5]. Digital interventions
powered by artificial intelligence (AI) have the potential to
reduce these disparities by aiding clinicians in remotely
providing care and monitoring patients between visits, especially
among populations living in rural areas in Hawaii. Furthermore,
such technology could be useful in relapse prevention for those
hoping to maintain abstinence. In Hawaii in 2021, a total of
96% of residents possessed at least 1 piece of hardware with
internet capacity, with only 4% lacking access to such
equipment, indicating widespread internet access among the
population [6].

AI-based detection of substance abuse using biometric signals
measured by wearables is an active field of research across
several research laboratories globally, as documented in a 2022
review paper by Rumbut et al [7]. Studies in this field tend to
collect prediction labels through the remote administration of
an ecological momentary assessment (EMA), a methodology
in which participants are periodically asked to answer questions
about their psychiatric or behavioral state while living as usual
[8-10]. Notably, previous AI models suffered from clinically
unacceptable performance. The primary reason for this lackluster
performance is that prior methods attempted to train models
using data from many patients, which is the status quo in deep
learning because of the requirement of massive data sets for
successful training. In contrast to these prior works, we will
develop personalized AI models using a method developed in
PW’s laboratory, which are capable of learning baseline patterns
of human behavior and transferring this knowledge to prediction
tasks with very few labeled examples to learn from.

Our research laboratory is particularly qualified to carry out this
project as we are already developing computer science methods

to support the personalization of AI models for large and mostly
unlabeled data streams, with promising preliminary data and
publications in preparation supporting this methodology. As a
T1 (covering basic discovery) or T2 (initial human trials)
project, our proposed study is significant both in terms of
equitable substance abuse therapeutics and as a general
methodology for clinical and translational research in other
domains. There are countless situations in health care where
vast amounts of unlabeled data are collected from a single
patient. Annotations for the event of interest (eg, substance
abuse) are frequently sparsely dispersed. The development of
predictive supervised models is infeasible in such circumstances
because classical approaches cannot handle the complexity of
data, and modern deep learning approaches require vast amounts
of data.

Innovation
To support machine learning (ML) development in situations
where vast longitudinal data are collected with minimal
human-provided annotations, we propose the development of
personalized ML models, which are trained solely on an
individual’s unlabeled data to learn feature representations that
are specific to their baseline temporal dynamics. We are creating
a novel method and framework that has never been explored in
health care, consisting of pretraining neural networks to learn
the temporal dynamics of a patient’s biosignals. This method
will enable deep networks to be trained using relatively small
data sets, which would not be possible without the
self-supervised approach proposed in this study. This technique
is particularly well-suited for massive data sets with few labels.

The application of personalized AI to a diverse population of
persons using substances is unique. Native Hawaiian, Filipino,
and Pacific Islander communities have been understudied and
could benefit from novel treatments to address
methamphetamine use. Although we will apply this
technological innovation toward the prediction of
methamphetamine use, multimodal time-series personalization
can be applied to a variety of other biological and health
problems where (1) multiple signals are sparsely emitted, (2)
the baseline signal patterns are specific to each individual, and
(3) it is infeasible to acquire the vast amounts of labels required
to train a supervised deep learning model.

This method has the potential to dramatically advance the field
of precision health care by enabling reliable AI predictions from
massive but mostly unlabeled data sets, which are trained in a
self-supervised manner on data from a single user. This setting
of large, unlabeled data sets with sparse supervision appears
frequently in the field of digital health care. Notable examples
include passive mobile sensing studies for mental health and
well-being [11-20], digital therapeutics for children with autism
spectrum disorder that record videos of the child [21-37], and
passive brain sensors for brain-computer interfaces [38-46]. As
such, this study protocol can be considered as one of the first
tests of a broader emerging paradigm in precision health.
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Methods

Overview
The long-term methodological goal of the proposed work is to
develop novel AI methodologies for predicting health events
(eg, methamphetamine use and cravings) using biosensors in a

personalized manner. This technical innovation will be applied
toward the detection of drug use events from wearable device
sensors. The inputs to the proposed AI models are Fitbit (Fitbit
Inc [47]) biosensor readings, and the outputs are predictions of
methamphetamine use or craving (Figure 1). The methods
developed can be applied to a variety of biomedical domains.

Figure 1. In many biomedical domains, there exist large data sets with sparse annotations of health events. We propose a “personalized self-supervised
learning” method that can support the training of deep neural networks in such scenarios. We will evaluate our method primarily on the prediction of
methamphetamine use events using biosignal data from a Fitbit device.

Diagnostic ML models are typically trained and deployed at a
population level. In this traditional scenario, a single model is
developed to make predictions for all individuals within a
population. However, in several health contexts, an event of
interest occurs repeatedly for an individual. For example,
patients with diabetes have repeated blood glucose spikes, and
chronically stressed individuals might have repeated blood
pressure spikes. In these cases, ML models can be developed
by conducting supervised training on the individual’s data only,
resulting in a separate personalized model per individual.
Although deep learning models have achieved state-of-the-art
performance in a variety of health contexts, neural networks
require massive data sets that are infeasible to collect for an
individual. However, recent advances in self-supervised learning
(SSL), or the subfield of ML focusing on pretraining models
without any human-provided labels, have made it possible to
realize the personalized ML diagnostics paradigm using deep
learning by pretraining the weights of a neural network such
that it can learn the baseline temporal dynamics without any
labels. The pretrained model can then use transfer learning on
relatively few labels that are acquired solely from the individual
in question. This methodology can work particularly well in
scenarios where massive amounts of unlabeled data are
collected, such as with continuously worn devices.

Aim 1: To Understand the Feasibility of Remote Digital
Monitoring and EMAs in Native Hawaiian, Filipino,
and Pacific Islander Communities by Curating
Longitudinal Fitbit Biosignals With the Corresponding
Substance Use and Craving Labels

Description
We will recruit 40 carefully selected Native Hawaiian, Filipino,
and Pacific Islander participants who are either in treatment or
have received services from one of our community partners to
participate in a 4-week remote Fitbit data collection and
concurrent EMA study. EMA studies, which involve periodic
digital self-reports about psychiatric and behavioral outcomes
in the wild, have often been used to understand substance abuse
[48], including among persons who use methamphetamine [49].
We expect ≥80% complete data from approximately 25%
(10/40) of the participants (refer to the Recruitment section for
justification). Each participant will wear a study-provided Fitbit
Charge 5 watch during all waking hours for at least 15 hours
each day. Apart from wearing the device and periodically
recording an EMA about their methamphetamine use via a
mobile smartphone app (Figure 2), participants will be asked
to follow their normal routine throughout the study.
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Figure 2. User interface of the ecological monitoring app provided to participants.

Participant Recruitment and Management
We will recruit participants from a combination of sites,
including the Hawaii Health and Harm Reduction Center and
other sites where the clinical collaborators have connections
(ie, Hina Mauka). Potential participants will be eligible for the
study if they (1) are aged ≥18 years, (2) self-report consumption
of methamphetamine on ≥2 different days per week on average,
(3) have no plans to leave Oahu for at least 1 month, and (4)
own a smartphone with either a data plan or regular access to
a Wi-Fi connection. Potential participants will be excluded if
they (1) are homicidal or suicidal, (2) cannot provide informed
consent, (3) are not able to complete interviews in English, (4)
are expecting incarceration or plan to leave Oahu within the
next month, or (5) are unable to provide names and contact
information for at least 2 verifiable locator persons for retention
purposes.

We will recruit 40 participants in total. A secondary analysis
of EMAs for methamphetamine abuse monitoring measured
the percentage of participants who reached ≥80% compliance
at different frequencies of methamphetamine use, finding that
approximately 50% of persons who use methamphetamine 1 to
3 times per month met this 80% compliance bar, and 40% using
1 to 2 days per week met the bar, and 25% using 3 to 4 days
per week met the bar [50]. Therefore, we anticipated that
approximately 25% (10/40) of the participants will reach ≥80%
compliance rate, which is sufficient to demonstrate the feasibility
of our AI method, as a separate analysis will be conducted for
each participant (ie, 1 model per participant).

Data Collection
We will leverage the existing application programming interface
provided by Fitbit to record the user’s watch sensor readings
and upload the data to the cloud. The Fitbit application
programming interface provides access to heart rate (HR),
gyroscope and accelerometer readings, breathing rate, blood
oxygen saturation (SpO2) level, and skin temperature sensor
readings. These biosensors have previously been used to predict
substance abuse and cravings using AI [51-55]. The data will
be managed on each participant’s smartphone device through
an app, implemented for both iOS and Android, which we are
actively developing. The study team will install the app on the
user’s smartphone and configure the Fitbit device during study
onboarding.

We will run the study with 8 (20%) of the 40 participants at a
time as we have 8 Fitbit Charge 5 devices, resulting in 5 batches
of data collection periods. We will record background
characteristics, substance use, and treatment history during study
intake, and we will record questions pertaining to the tolerability
and obtrusiveness of the app during study outtake (Textbox 1).
The smartphone app will record EMA responses from the
participants throughout the 1-month study period (Textbox 1).
At each EMA, we will ask participants to list the approximate
times (eg, date, hour, and minute) of their methamphetamine
intake in the past 24 hours via a user interface on the smartphone
app. Participants will be asked to do the same for cravings.
Participants will be prompted to provide EMA responses both
when drastic signal changes are detected (ie, event-triggered
EMA) and every 24 hours (ie, fixed-interval EMA).
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Textbox 1. Study intake and outtake measures and ecological momentary assessment (EMA) questions collected from each participant.

Background characteristics (intake)

• To better describe the sample, participants will be asked about their gender, sexual orientation, age, race or ethnicity, marital status, education,
income, employment, housing, and health insurance status.

Substance use and treatment history (intake)

• Questions will be developed to assess current and history of substance use and participation in treatment services.

Tolerability (study conclusion)

• How comfortable was the device?

Obtrusiveness (study conclusion)

• Did the device change your daily routine? Do you have any concerns with continuously Fitbit usage?

Methamphetamine use (EMA)

• Have you used meth since the last time we contacted you?

• Approximately what time did you last use meth?

• How did you use meth the last time you used?

Craving (EMA)

• Please rate your current craving or desire to use methamphetamine at this exact moment on a scale of 0-10, with 0 being “no cravings” and 10
being “extremely intense cravings.”

We will institute procedures to reduce the burden associated
with EMA and increase compliance as suggested by Burke et
al [56]. To reduce the burden related to time commitment, we
are compensating for every signal-contingent response and
providing additional compensation when participants respond
to >80% of prompts. Participants will be trained extensively on
the EMA protocol at baseline, and if they experience any
technology-related issues, our research assistants will help
troubleshoot these issues remotely. Participants who experience
technology-related problems will not have their compensation
reduced because of missing prompts.

We will store the curated data from each participant (Figure 2)
on a centralized server hosted on Amazon Web Services (AWS;
Amazon). Data uploaded from both wearable systems and the
smartphone will first run through a preprocessing server hosted
on an elastic cloud computing (EC2) instance with data stored
on DynamoDB (Amazon). Each table will have columns for
the participant ID and timestamp. To ensure privacy and Health
Insurance Portability and Accountability Act (HIPAA)
compliance, we will encrypt all server-side data and require
secret access keys for data access. DynamoDB tables are
automatically encrypted on the server side. To add an additional
layer of security, we will implement client-side encryption on
the mobile app, ensuring encrypted data transmission across an
https connection to move data between the devices and AWS.
The data will not be accessible without a secret access key. All
data will be anonymized.

An anonymized version of participant data will be made
available to other computational researchers as a publicly
available data set. This data set will be stored on AWS on a
HIPAA-compliant server and will be password protected.
Researchers will only gain access to this data set by signing a

data use agreement. Such data sets exist for activity and emotion
recognition from wearable data, but the prediction of
methamphetamine use from these measurements will be a
challenging task, and other ML practitioners can improve upon
our initial AI models with the release of the deidentified data
set. This will be the first publicly available data set that includes
substance use self-reports alongside wearable sensor readings.

Data Analysis and Interpretation
We will measure the success rate of the remote data collection
procedure using the response rate to EMA notifications. We
hypothesize that we will observe higher compliance rates with
event-triggered EMAs than fixed-interval EMAs. Furthermore,
we will document qualitative challenges with the data collection
process, tolerability, and unobtrusiveness (Textbox 1). We will
conduct an interview with the participants at the study
conclusion when the devices are returned. The research team
will qualitatively code interview responses to derive recurring
themes and design insights.

Potential Pitfalls and Mitigation Strategies
This analysis plan is uniquely robust to incomplete data
collection because a separate AI model will be trained and
evaluated for each participant. There is no requirement for
equivalent data streams between participants nor will the
analysis be prevented if the full 28-day data collection period
is not achieved. The ML strategy can work with only a few
logged methamphetamine use events. We expect approximately
25% (10/40) of the participants to complete the study at a
sufficient level of compliance to support personalized ML
analysis. This will provide sufficient data to demonstrate the
feasibility of personalized ML analysis.
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We have budgeted a 4-month buffer period beyond the 5 months
required for complete data collection to account for participant
delays and no-shows. Because participant data will be uploaded
to AWS daily, we will remotely monitor participants through
an automated tracking system already developed in our research
laboratory and will cease the study if compliance is not logged
after 4 days. Another possible issue is Fitbit theft or loss. To
minimize this risk, participants will be compensated a minimum
of US $135 for study completion and a maximum of US $210,
which will be paid when the Fitbit device is returned. In the
case of Fitbit device breakage or loss, our laboratory will
purchase additional devices with funds separated from Center
for Pacific Innovations, Knowledge, and Opportunities, up to
a limit of 6 additional devices along the course of the study
period.

Aim 2: To Develop Real-Time Personalized AI Models
Predicting Methamphetamine Use and Craving With
Fitbit Sensor Data

Description
On the basis of extensive support from prior literature, we
hypothesize that AI solutions can detect periods of both

methamphetamine use and cravings with high sensitivity through
the personalization of ML models. Such models will achieve
high performance on a single individual through the finetuning
of each model using only the data curated from the person of
interest for model training. These personalized predictions can
trigger the onset of digital therapy. We will develop two AI
models per participant: (1) a model that detects
methamphetamine use in real time and (2) a model that predicts
methamphetamine craving in real time. We hypothesize that
model personalization using novel self-supervised pretraining
strategies will outperform traditional state-of-the-art AI
techniques with <5% of the required label data.

ML Model Training
The inputs to the models will consist of a separate 1D
convolutional backbone pretrained for each biometric modality.
The convolutional features will be fused upstream into a shared
joint dense representation space and finally a dense prediction
layer with linear activation for regression prediction (Figure 3).
We will implement all models using TensorFlow (Google Brain)
[57].

Figure 3. The key methodological computer science innovation of this protocol is the personalization of machine learning models that make predictions
from biosignals time-series data without user-provided labels. In this figure, we depict a neural network that is trained to predict a heart rate signal given
SpO2 levels and accelerometer signals from a single participant. SpO2: blood oxygen saturation.

The data augmentation techniques that we apply to the signals
will be domain specific, keeping in mind the inherent dynamics
of each sensor. For example, for accelerometer data, rotations
simulate different sensor placements, and cropping is used to
diminish the dependency on event locations [58]. Across several
modalities, sensor noise can be simulated through scaling,
magnitude warping, and jittering [58]. We will be careful not
to apply augmentation strategies that might change the meaning
of the underlying signal.

Model Personalization
SSL is usually used to pretrain an entire data set with no explicit
labeling by humans to guide the supervision task. We propose
to redesign the SSL paradigm toward the task of model
personalization. By pretraining a model only on the vast amounts
of data curated from a single individual, the weights of the
neural network will learn to make predictions using the inherent
structure of each participant’s biosignals. This is essential
because baseline HR, SpO2, skin temperature, and movement
patterns, regardless of stress, will vary drastically across
individuals, limiting the performance of general-purpose ML
models.
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We plan to exploit the multimodal time-series nature of the
collected data to perform novel SSL pretraining. We will use
≥1 signal to predict the value of another signal source (Figure

4). The motivation for this approach is that the biometrics of
interest recorded by Fitbit are correlated [59-62].

Figure 4. Depiction of the proposed data set, consisting of continuous Fitbit Charge 5 sensor readings and the corresponding methamphetamine use
and craving annotations from 20 participants collected over a 4-week period. HR: heart rate; SpO2: blood oxygen saturation.

Data Analysis and Interpretation
We will train the model on the first 75% of the data (by time)
and calculate the balanced accuracy, precision, recall, F1-score,
and area under the receiver operating characteristic curve for
the final 25%. This evaluation pattern mimics real-world use,
where a model will be calibrated by a user before real-world
deployment. It is important to emphasize that we will train and
test a separate personalized ML model for each individual (up
to 40 separate models).

In a manner similar to our preliminary data, we will evaluate
the models by comparing the performance with respect to the
number of labeled examples used for supervised finetuning. A
plot of this comparison will elucidate the number of
methamphetamine annotations required for model calibration
to an individual. We will create a separate plot for each study
participant as the ML portion of this protocol tests the
personalization of ML models rather than a general-purpose
one-size-fits-all ML model, which is more typical in ML
evaluations.

Feasibility
Self-supervised pretraining has been successfully demonstrated
in several contexts in computer science and even health care
[59,63,64], although not in the personalized context that we will
explore, except for preliminary results that we have recently
published [65-68]. Multimodal SSL has demonstrated success
in prior literature [69-72], although not in the personalized
manner in which we will innovate.

Ethical Considerations
This protocol was approved by the University of Hawaii
Institutional Review Board (protocol #2022-01030). In addition,
this study has received further scrutiny and approval from the
University of Hawaii Data Governance Process (request
#230410-3).

Informed consent will be provided by the participants on paper
during the intake session of the study.

Participants will provide information about their substance use
on a smartphone app that we have created and will install on
the phones of each participant. Because Fitbit is owned by
Google, participants’ Fitbit data will be uploaded directly to

Google’s cloud servers, which uses the same level of security
as other Google products, such as Gmail.

Access to each participant’s Fitbit data on Google’s cloud
servers is implemented through OAuth, which provides clients
with secure delegated access to server resources on behalf of a
resource owner (ie, the participants of this study). This
mechanism is used by companies such as Amazon, Google,
Facebook, Microsoft, and X (X Corp, formerly known as
Twitter) to permit the users to share information about their
accounts with third-party apps or websites. In this case, the
“third party” is the study team.

Access to each participant’s annotations of substance use and
craving from their smartphone app will be immediately uploaded
to our secure and encrypted server on AWS, which is HIPAA
compliant [73]. The participant’s data will be immediately
removed from their smartphone after successful uploading to
AWS.

All participant data will be analyzed on AWS. A fully
anonymized version of the data set will be released to
researchers who sign a data use agreement, which will be
approved by the University of Hawaii Data Governance Office.

As a precaution, the interface on the app will not be labeled as
“substance consumption” and “substance use” but rather as
“banana consumption” and “banana use.” Furthermore, our data
will be stored and labeled as “fruit” rather than “substance use.”

The participant’s data that will be accessible to the study team
will include biometrics data from Fitbit, labels of “banana
consumption” and “banana use” with the corresponding
timestamps, and a unique participant ID. Digital data will only
contain participant IDs rather than identifiable information. A
paper copy of the participant’s mapping from the participant
ID to the name and contact information will be stored on paper
and securely locked in a lockbox hidden in PW’s desk. The
lockbox in PW’s desk is secured with a key that only PW has
access to, and his desk is in his office, which is secured with
another key that only PW has access to. PW’s office is located
within a suite of offices, which is secured by a third key that
only professors in the Information and Computer Sciences
Department have access to and which currently only PW has
access to.
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We will anonymize all the collected data. We will be provided
with a Federal Certificate of Confidentiality from the National
Institutes of Health, which will protect participants and assure
confidentiality and privacy. KTP, a member of the mentorship
and community teams, has found that having a Certificate of
Confidentiality helps retain participants in lengthy projects.

Compensation Type and Amount
We will provide the participants with US $135 for participation
in the study. This amount is commensurate compensation for
the requested work (wearing a smartwatch during all waking
hours of the day for 4 weeks while continuously annotating
their craving events). In addition, this compensation amount is
above the market rate of a Fitbit device, helping to mitigate the
risk of device theft by study participants.

US $20 will be provided to the participants to cover their
transportation expenses for attending 2 in-person meetings on
campus.

Furthermore, we will use snowball sampling as a form of
recruitment, where participants can choose to refer their
acquaintances to the study. Enrolled participants will be
encouraged to refer other eligible participants to the study and
will receive US $5 each for up to 3 referrals who enroll. The
participants will be given 3 recruitment cards to distribute to
eligible participants. When a new and eligible enrollee presents
the card, the recruiting participant will receive US $5
compensation. If the recruiting participant has already completed
the study, they will be contacted via their assigned study phone
number (eg, by phone or SMS text messaging) or email to
receive the compensation. If this proves unsuccessful, we will
reach out to locator contacts or send a letter notifying the
participant that they are eligible for the additional compensation.

Finally, we can compensate participants an extra US $40 as an
incentive for providing responses on schedule and consistently
throughout the study period.

Results

Starting from November 2023, a total of 5 participants visited
our laboratory and received Fitbit devices, including 4 (80%)
male individuals and 1 (20%) female individual, aged between
22 and 63 years, representing 3 different ethnicities: 3 (60%)
are White, 1 (20%) is Mexican, and 1 (20%) is Filipino
Hawaiian.

Among the 5 participants, 178 logs have been collected. They
completed an average of 8.6 days of EMA activity reporting,
with each participant logging their data approximately 4 times
per day. In total, the participants reported 40 instances of
substance craving and 61 instances of substance use, including
methamphetamine, alcohol, cannabis, and nicotine.

Fitbit devices recorded sensor data, including HR, number of
steps, SpO2, HR variability, and breathing rate. HR and number
of steps were tracked throughout the day, whereas SpO2 level,
HR variability, and breathing rate were monitored during sleep.

Challenges related to EMA prompt reception were initially
experienced by 1 (20%) of the 5 participants, but these were

promptly resolved by the research team. In addition,
labor-intensive reporting of simultaneous substance use and
documenting of constant nicotine use posed difficulties for this
participant. Another participant noted increased awareness of
substance-related thoughts owing to EMA prompts.

Discussion

Preliminary Findings
To our knowledge, this is the first study to evaluate the
feasibility of using a mobile app–based EMA to prospectively
capture substance use among the Native Hawaiian, Filipino,
and Pacific Islander population. Despite challenges, this study
provides evidence to support the feasibility and acceptability
of using EMA methods for collecting data on substance use in
this population.

Following our research protocol, we successfully recruited 5
participants for our study in the first month of recruitment. Our
research protocol, which included 4 scheduled prompts per day,
was designed to represent a lower to moderate participant burden
[74,75]. Each participant consistently provided an average of 4
logs per day. We received no significant issues or complaints
from the participants, and their logging activities have been
continuous. This partially aligns with prior studies by Phillips
et al [76], Turner et al [50], and Hanson et al [77], who found
that it is feasible and acceptable to use EMA to evaluate
substances (eg, alcohol and methamphetamine) with people
who come from historically marginalized groups.

Meanwhile, 1 (20%) of the 5 participants showed hesitancy
regarding privacy concerns when discussing certain types of
substances, as reported in the study by Han et al [78] that
substance use can still be associated with social stigma. This
suggests that building and maintaining a trusting relationship
with the participants throughout the study, and even afterward,
is crucial.

Despite concerns raised by Adams et al [79] about the potential
impact of busy schedules on response rates, no significant
problems were encountered in this regard as long as participants
initiated their study. However, instances were experienced in
which eligible individuals needed to reschedule their meetings
because of their demanding work schedules. To accommodate
their availability, the research team maintained a flexible
schedule to encourage these individuals to visit the laboratory
at their convenience. Weekly check-ins were conducted by the
research team with the participants to ensure effective
participation and promptly address any issues that arose.

Although prior studies, such as those by Cao et al [80] and
Rodrigues et al [81], have successfully used Fitbit devices to
collect sleep data, one challenge encountered by the research
team is the absence of those data (eg, SpO2 level, HR variability,
and breathing rate) that can only be collected while participants
are asleep, despite the participants’ claims that they wear the
Fitbit devices during sleep. To address this issue, the research
team recommended that participants activate the sensitive mode
for sleep sensitivity in the Fitbit app settings and ensure that
they wear the devices tightly or close enough to their wrists.
However, this recommendation might negatively affect the
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participants’ sleep quality, particularly for those who have
self-reported sleeping problems.

This research protocol provides compensation to participants
for reporting substance use events. However, this approach
might lead to an increase in data noise, as observed when 1
(20%) participant provided 7 logs in a single day. The research
team will diligently review these data to ensure their
effectiveness and minimize potential noise.

None of the participants have reported participation exhaustion
owing to the research protocol so far, despite such findings
reported by Yang et al [75] and Semborski et al [82] in their
studies. This may be attributed to the fact that many participants
are still in their first or second weeks of the study. However,
the research team observed that contacting participants >2 times
per week could induce stress, particularly when technical issues
persist without resolution. In response to these observations,
the research team has currently limited their contact with each
participant to a maximum of 2 times per week to mitigate
participant exhaustion. Future studies may benefit from reducing
contact frequency and providing clear and efficient instructions
whenever such issues arise. Another issue related to participation
fatigue or dropout is the extended waiting time for study entry.
Despite the research team’s efforts to maintain contact with
individuals who registered as early as May 2023, some of them
may no longer be available or interested after several months
of waiting. Future studies should minimize the waiting period
to prevent potential disengagement.

One (20%) of the 5 participants expressed concerns about the
increased contemplation of substances when responding to EMA
prompts. Similarly, Fridberg et al [74] noted a slight increase
in self-reported alcohol consequences in their EMA study. One
plausible explanation is that certain EMA protocols may induce
stress [82], potentially triggering substance use [83]. This study
is in its initial stages and cannot provide any conclusions. The
research team will closely monitor this participant and conduct
weekly check-ins to ensure that there are no adverse effects.

This study has several limitations. Given the small sample size,
the preliminary findings do not have enough statistical power
to provide any significant findings on participants’ substance
use and craving patterns or sociocultural factors that might affect
those activities. The EMA prompts primarily collect quantitative
data related to the scale, timing, or dates of substance use or
cravings, excluding information on social and cultural factors
that may trigger or influence substance cravings or use. For
instance, we could not capture the presence of others during
these moments using EMA prompts. Meanwhile, incorporating
these questions into EMA prompts as self-reported data could
have imposed cognitive demands on the participants, potentially

impacting response rates and causing participation fatigue. To
address this limitation, we plan to conduct in-depth
semistructured interviews to explore the social and cultural
factors.

One (20%) of the 5 participants highlighted the challenge of
logging multiple substance use instances simultaneously and
recommended the implementation of a more user-friendly
feature in such situations. Currently, the research team is actively
working to enhance this feature. In future studies, it is advisable
to consider providing a more intuitive design when requiring
participants to submit multiple logs in a more streamlined
manner.

Our target population consisted of Native Hawaiian, Filipino,
and Pacific Islander individuals; however, none of the team
members belonged to this community, despite some team
members having lived in Hawaii for >5 years. To address this
limitation, the research team will work closely with the local
partners, such as Hawaii Health and Harm Reduction Center
and Hina Mauka, to ensure that key social and cultural factors
are not overlooked.

Another limitation of our study is the exclusion of potentially
eligible individuals who do not own a mobile phone or lack
internet access. Future research endeavors could enhance
inclusivity by considering the provision of mobile phones with
a data plan for individuals who lack these resources.

Conclusions
An EMA using smartphone apps offers a broad scope of research
perspectives. Its capacity to capture phenomena instantaneously
within real-life contexts grants the EMA a promising vantage
point for understanding methamphetamine use and cravings
among the Native Hawaiian, Filipino, and Pacific Islander
population and other racial groups in Hawaii who have
experienced methamphetamine-related disparities from the
1980s. Given the dearth of research on this issue within the
targeted, historically marginalized group, sharing and presenting
a standardized and innovative protocol for conducting EMA
studies on methamphetamine use is crucial, which is the primary
objective of this study.

We anticipate that this study will yield valuable insights into
the feasibility of using EMA methods in this particular
population and the sociocultural factors that can affect precise
data acquisition. Furthermore, it will enable the development
of personalized AI models for predicting
methamphetamine-related behaviors within this demographic
group. To date, our preliminary findings indicate promising
outcomes associated with the use of EMA methods for data
collection.
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AWS: Amazon Web Services
EMA: ecological momentary assessment
HIPAA: Health Insurance Portability and Accountability Act
HR: heart rate
ML: machine learning
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SSL: self-supervised learning
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