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Abstract

Background: A considerable number of minors in the United States are diagnosed with developmental or psychiatric conditions,
potentially influenced by underdiagnosis factors such as cost, distance, and clinician availability. Despite the potential of digital
phenotyping tools with machine learning (ML) approaches to expedite diagnoses and enhance diagnostic services for pediatric
psychiatric conditions, existing methods face limitations because they use a limited set of social features for prediction tasks and
focus on a single binary prediction, resulting in uncertain accuracies.

Objective: This study aims to propose the development of a gamified web system for data collection, followed by a fusion of
novel crowdsourcing algorithms with ML behavioral feature extraction approaches to simultaneously predict diagnoses of autism
spectrum disorder and attention-deficit/hyperactivity disorder in a precise and specific manner.

Methods: The proposed pipeline will consist of (1) gamified web applications to curate videos of social interactions adaptively
based on the needs of the diagnostic system, (2) behavioral feature extraction techniques consisting of automated ML methods
and novel crowdsourcing algorithms, and (3) the development of ML models that classify several conditions simultaneously and
that adaptively request additional information based on uncertainties about the data.

Results: A preliminary version of the web interface has been implemented, and a prior feature selection method has highlighted
a core set of behavioral features that can be targeted through the proposed gamified approach.

Conclusions: The prospect for high reward stems from the possibility of creating the first artificial intelligence–powered tool
that can identify complex social behaviors well enough to distinguish conditions with nuanced differentiators such as autism
spectrum disorder and attention-deficit/hyperactivity disorder.
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Introduction

Background
Approximately 17% of minors in the United States aged 3 to
17 years have a diagnosis of ≥1 developmental or psychiatric
conditions [1], with the true prevalence likely being higher
because of underdiagnosis in rural areas and for minority
populations [2]. Unfortunately, timely diagnostic services are
inaccessible to a large portion of the United States and global
population owing to cost, distance, and clinician availability.
Digital phenotyping tools have the potential to shorten the time
to diagnosis and bring diagnostic services to more people by
enabling accessible evaluations. Although automated machine
learning (ML) approaches for the detection of pediatric
psychiatric conditions have garnered increased research attention
in recent years, existing approaches use a limited set of social
features for the prediction task and focus on a single binary
prediction.

Many psychiatric conditions affecting adolescents contain
overlapping etiologies and phenotypic characteristics. A major
difficulty preventing the expansion of computational methods
into the simultaneous prediction of multiple related conditions
stems from heavy similarities between their phenotypes, creating
barriers to achieving specificity and precision. Although some
of the key overlapping and distinct features of these conditions
are related to behaviors that can be automatically detected with
ML methods, such as eye gaze patterns and facial emotion
evocation, the majority are too complex for current ML
techniques to classify precisely. For example, the degree to
which a child enjoys participating in social games and
interactions is one of the most salient behavioral features for
autism spectrum disorder (ASD) diagnosis [3]. However,
building an ML model for behavioral features is infeasible
because of outliers and irrelevant, noisy features. These factors

contribute to poor data generalization and increase the risk of
overfitting. Furthermore, the constraints of existing benchmark
data sets, characterized by a limited number of participants,
pose challenges for deep learning (DL) models that thrive on
substantial, diverse, and representative data to capture complex
and nuanced features accurately [4]. By contrast, humans can
naturally identify complex and nuanced behaviors by observing
their peers. Crowdsourcing, or the use of distributed human
workers toward a common goal, has the potential to bridge this
gap by enabling rapid feature tagging of complex behaviors on
demand. Although crowdsourcing has traditionally been used
for public health studies and labeling ML training data, we plan
to explore the incorporation of human labels into the feature
extraction process. The intuition behind the proposed paradigm
is that although nonprofessionals may be unable to directly
identify psychiatric diagnoses from videos, many can tag
behaviors that are relevant to a diagnosis.

We propose to develop a novel paradigm for accessible and
scalable multicondition digital diagnostics of neuropsychiatric
conditions by fusing traditional ML with novel
human-in-the-loop crowdsourcing approaches. Although this
approach (Figure 1) can be applied toward classification between
any set of psychiatric conditions, we will focus on
attention-deficit/hyperactivity disorder (ADHD) and ASD to
maintain feasibility. The approach will comprise (1) developing
gamified web applications to curate videos of social interactions
adaptively based on needs of the diagnostic system, (2)
innovative behavioral feature extraction techniques consisting
of automated ML methods and novel crowdsourcing algorithms,
and (3) ML models that classify several conditions
simultaneously and that adaptively request additional
information based on uncertainties about the data. We will
collaborate with Dr Dennis Wall, who will provide domain
expertise for pediatric developmental delays and methodological
guidance for innovative biomedical data science solutions.

Figure 1. Overview of the proposed crowd-powered diagnostic system comprising adaptive gamified data curation, behavioral feature extraction by
both crowd workers and computational workflows, and machine learning models for multicondition classification that also output individual symptom
estimates and dynamically query participants based on crowd ratings. Each of these 3 major steps is independent yet can be combined to produce a
synergistic improvement in remote and accessible diagnostics for pediatric psychiatry. ADHD: attention-deficit/hyperactivity disorder.

The proposed project involves the integration of multiple data
modalities for its diagnostic tasks, including from ML and from
crowd workers. In our prior work, we have worked with several
sources of information such as facial emotion [5,6], body

movements [7,8], audio streams [9], and crowd worker ratings
[10,11], all of which were used toward the singular goal of
digital ASD diagnostics. For this protocol, we hypothesize that
the complex and heterogeneous nature of the conditions that
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we plan to study requires multimodal data analysis to achieve
a clinically acceptable level of performance, and this protocol
will involve testing this theory.

Related Work
Psychiatric conditions are widespread globally across
demographic groups and geographical boundaries. The
prevalence of ADHD is 2.5% in children and 5% in adults [3].
The prevalence of ASD is approximately 1% [3]. Approximately
50% to 70% of individuals diagnosed with ASD also have
comorbid ADHD. Access to diagnostics, and therefore care, is
limited for populations with low income or large geographic
distances from clinicians. Although diagnostic modalities based
on biomarkers are promising, they can be inaccessible to
underserved populations. By contrast, a large and rapidly

expanding portion of the global population has access to digital
devices. As psychiatric conditions are fundamentally diagnosed
based on behaviors, digital methods to measure behavior have
the potential to bring diagnostic services to populations that
have been traditionally neglected in health care.

A psychiatrist’s diagnostic evaluation process involves
identifying ≥1 condition from a large set of possibilities defined
by the Diagnostic and Statistical Manual of Mental Disorders,
Fifth edition (DSM-5). However, current approaches to digital
diagnostics tend to focus on binary predictions. A major
bottleneck complicating the pursuit of multiclass psychiatric
diagnostics is that behavioral conditions often have overlapping
presentations (Table 1), severely complicating the use of purely
automated methods.

Table 1. Overlap of a small subset of the core behavioral symptoms of ASDa and ADHDb. Overlap is determined according to the DSM-5c diagnostic
criteria [3].

ASDADHDBehavioral symptom

✓✓Difficulty with social skills

✓Concentration issues

✓✓Hyperfixation

✓Restrictive and repetitive behaviors

✓High distractibility

✓Impulsivity

✓Hyperactivity

aASD: autism spectrum disorder.
bADHD: attention-deficit/hyperactivity disorder.
cDSM-5: Diagnostic and Statistical Manual of Mental Disorders, Fifth edition.

In addition, each condition is heterogeneous, and all defining
behavioral symptoms do not have to be present to warrant a
diagnosis. Psychiatric conditions can either be comorbid (eg,
ADHD and ASD) or not (eg, only ADHD or only ASD), creating
a diagnosis space that scales combinatorially with each
additional condition considered. For feasibility, we will only
study 2 conditions to maintain a reasonably sized output space
of 4.

The proposed research addresses a critical need in the field of
pediatric neuropsychiatric diagnostics, focusing on the
challenges posed by the prevalence of developmental and
psychiatric conditions among minors in the United States.
Current diagnostic practices face limitations in accessibility,
particularly concerning cost, distance, and the availability of
clinicians [10,12-14]. The Background section highlights the
potential of digital phenotyping tools to overcome these
challenges and expedite the diagnostic process through ML
approaches. The field of digital phenotyping is vast and broad.
A nonexhaustive list of National Institutes of Health–funded
projects for developmental diagnostics includes the work by
Guillermo Sapiro (NIH grant number R01MH120093)
developing active closed-loop data collection for gaze and motor
features for ASD as well as ADHD [15-22], work by James
Rehg (NIH grant number R01MH114999) modeling nonverbal
communication in atypical and typical development [23,24],

work by Robert Schultz (NIH grant number R01MH118327)
involving diagnostic computer vision analyses of motor
movements displayed in videos of dyadic social interactions
involving children with ASD [25], and work by Dennis Wall
(NIH grant number R01LM013364) exploring the use of mobile
games to acquire computer vision data for DL prediction of
individual ASD-related behaviors [26-41].

Previous studies [4,12,42,43] have recognized the potential of
ML techniques for detecting pediatric psychiatric conditions.
However, a notable limitation of the existing approaches is their
reliance on a limited set of social features for prediction tasks,
often concentrating on a single binary prediction. For instance,
in 2019, Carette et al [12] meticulously analyzed eye-tracking
scanpath data using preprocessing procedures such as feature
extraction via principal component analysis. The paper
delineates comprehensive guidelines for the acquisition of the
scanpath image data set. ML models were implemented,
including support vector machine, logistic regression, random
forest, and artificial neural network with diverse layers. The
outcomes underscored the identification of a Childhood Autism
Rating Scale score threshold of ≥36 as indicative of severe ASD.
Notably, the single-layer artificial neural network model
exhibited an improved area under the curve, outperforming
support vector machine, which attained 77%. Despite the
noteworthy findings, the study conscientiously recognized
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certain limitations, including a confined participant pool and
shorter video scenarios, suggesting avenues for prospective
investigations. This limitation raises concerns about the
specificity and precision of these models, particularly when
dealing with the overlapping etiologies and phenotypic
characteristics inherent in many psychiatric conditions affecting
adolescents [44].

The literature [14] underscores the complexity of overlapping
psychiatric conditions, such as ADHD and ASD, and the
challenges in achieving specificity and precision in their
simultaneous prediction. Key behavioral features, such as eye
gaze patterns and facial emotion evocation, present opportunities
for automated ML methods, but the majority remain too complex
for precise classification [10]. For example, a study [45] centered
on analyzing eye-tracking image data using a clustering
approach with 2 distinct algorithms, K-means and an
autoencoder. The findings revealed that 33% of individuals
were categorized into cluster 1, indicating the presence of ASD,
whereas a higher prevalence of 85% was observed in cluster 2.
However, the study lacks clarity on the specific feature
extraction technique and parameter settings applied during the
clustering process. Therefore, our study introduces a novel
paradigm that integrates traditional ML with human-in-the-loop
crowdsourcing approaches to address the limitation of feature
annotation. The motivation behind this paradigm lies in the
belief that although nonprofessionals may struggle to identify
psychiatric diagnoses directly, they can effectively tag behaviors
relevant to a diagnosis. This shift toward a crowdsourced,
human-annotated feature space is a novel approach in the context
of pediatric neuropsychiatric diagnostics.

In addition, ML models incorporating both human-annotated
and automatically extracted features are hypothesized to
outperform models using only 1 type of feature; there is a
notable gap in the literature regarding the integration of
human-annotated features through crowdsourcing for the
specific purpose of enhancing diagnostic accuracy in pediatric
psychiatry [4,42,46]. Mauro et al [13] introduced a model to
extract sensory features from consumer feedback reviews,
considering user preferences and compatibility information.
The efficacy of their model was assessed across individuals
considered autistic and neurotypical through integration into
the recommendation algorithm. However, because the perception
of places is inherently subjective, there exists a potential for
bias in the feature values derived from explicitly crowdsourced
data. Consequently, the authors recommended a comprehensive
evaluation of the features through multimodal analysis to
enhance the precision and accuracy of the proposed algorithm.

Our proposed research protocol fills a critical gap in the
literature by combining automated ML methods with innovative
crowdsourcing algorithms, aiming to create a diagnostic system
with greater discriminative power than previously achievable
in precision psychiatry.

Methods

Overview
In contrast to prior inspirational National Institutes of
Health–funded efforts and others like them, we propose an
approach to digital phenotyping that expands the possible feature
vectors used to classify psychiatric conditions with complex
and nuanced social features that only humans can identify using
a novel crowd-powered precision diagnostics approach. The
primary high-risk and high-reward differentiators from prior
work are (1) the incorporation of a novel crowdsourcing pipeline
into a precision diagnostic system to enable quantification of
more complex social features, (2) the adaptive querying of the
participant in question within a 2-player game-based system
using active learning algorithms that exploit crowdsourced
responses, and (3) the differential diagnosis of ASD and ADHD
simultaneously. Differentiators (2) and (3) would not be possible
without (1). The addition of targeted crowdsourcing into the
diagnostic process creates several technical challenges that we
will address, including automating the preservation of privacy
of participants, efficiently and intelligently quantifying the
behavioral feature–tagging ability of crowd workers, and
creating algorithms for dynamically assigning workers to new
data streams and tasks. Although prior projects have attained
successful performances >90% using purely automated DL
approaches to differentiate ASD from neurotypical peers [47],
our preliminary data show that human-in-the-loop crowdsourced
feature tagging of targeted behavioral features results in
classification sensitivity, specificity, and accuracy >95%, even
when privacy-preserving alternations are made to the video
streams [42,48,49]. We hypothesize that incorporating both
human observations, which are beyond the current and
foreseeable abilities of ML, into the feature extraction process
will provide enough social information for automated models
to classify each condition using the same video data.

We hypothesize that diagnostic ML models that incorporate
both human-annotated features acquired through crowdsourcing
(to generate a complex feature space with respect to social
human behavior) and automatically extracted features (to
provide objectivity when possible) will outperform models that
use only automatically extracted features or only
human-provided features, as there will likely be nonlinear
interactions between features. This complex feature space will
allow the classification model to simultaneously distinguish 4
possible outcomes: only ASD, only ADHD, both ASD and
ADHD, or neither condition. To support efficient and reliable
feature tagging by workers, we will develop novel
crowdsourcing algorithms for quantifying the behavioral tagging
strengths and weaknesses of each worker. The algorithms will
dynamically assign workers to tasks based on their tagging
history. We will alter each video to provide privacy protection
for the participants while still allowing reliable tagging. To
facilitate the acquisition of sufficiently structured data, we will
develop a broadly accessible gamified web platform for curating
socially enriched video and audio clips in a targeted manner.
We will use active learning algorithms to adaptively query for
additional data in cases where the presence of a particular
symptom is unclear from the current set of ML features and
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crowdsourced ratings. Each of these innovations (crowdsourcing
algorithms, privacy-preserving video alterations, gamified social
data capture systems, and active learning algorithms to
dynamically query needed data), although useful for the field
of precision psychiatry individually, will be combined to create
a novel diagnostic system with greater discriminative power
than previously possible.

Achieving the precision required to distinguish between ASD,
ADHD, both ASD and ADHD, or neither from videos of social
interaction using ML at clinically acceptable levels requires a
complex social feature space that is not necessarily impossible
but highly infeasible with purely automated methods. In contrast,
untrained human annotators can identify nuanced social features
but are prone to error because of the subjective nature of the
task. Combining features extracted by both nonexpert human
raters and computational programs can enable precise
diagnostics and quantification of behaviors by creating a rich
diagnostic feature space. There are several challenges to
accomplishing targeted crowdsourcing in a precision health
context, which we will address, including privacy preservation,
quantifying crowd worker capabilities, and developing
algorithms for matchmaking crowd workers with incoming data
streams. The rich social feature space provided by
crowdsourcing enables improvements to the other aspects of
the digital behavioral diagnostics pipeline, including the adaptive
assignment of participants to data collection games using active
learning crowdsourcing metrics. Although we will focus on
ASD and ADHD in particular, the crowd-powered methods we
will develop have the potential to benefit diagnostics for any
condition primarily evaluated through behavioral observation.

Ethical Considerations
This study has been approved by the University of Hawaii
Institutional Review Board (IRB; 2022-00909). We will only
collect data from voluntary participants who sign an informed
consent (parents) and assent (children) document during the
intake session of the study. Participants whose videos will be
shared for the 20 crowdsourcing tasks used to filter workers
will be contacted by the study team to have a thorough
discussion about the planned use of those videos. Workers who
are qualified to rate the remaining videos for ≥1 question will
be required to complete The Health Insurance Portability and
Accountability Act training and The Collaborative Institutional
Training Initiative training and will be required to encrypt their
laptops using whole disk encryption. These workers will be
added to the IRB protocol and will become official members
of the study team after thorough training.

Although we will require participants to consent to sharing
videos with crowd workers who have undergone thorough
training, the clinical translation of this diagnostic system will
require a more scalable approach that is sensitive to privacy
concerns. We will experiment with privacy-preserving
alterations to the curated videos to obfuscate identifiable
information from the videos without degrading the
feature-tagging performance of workers. Examples include pitch
shifting the audio, which will allow workers to understand the
content of the speech, and pixelating the video, which will
obscure the participant’s background and face but would still

allow workers to observe body movement patterns. We will
measure the extent to which each privacy-preserving mechanism
degrades the answers to each question.

We will deidentify the participant data and anonymize any
personally identifiable information. All the data will be
immediately uploaded to our secure and encrypted server on
Amazon Web Services (AWS) [50], which is Health Insurance
Portability and Accountability Act–compliant. A fully
anonymized version of the data set will be released to
researchers only after signing a data use agreement, which will
be approved by the University of Hawai‘I Data Governance
Office.

To ensure that the annotation task is manageable for crowd
workers, each 15-minute video will be segmented into five
3-minute clips. During the profiling phase, crowd workers will
be compensated US $0.50 per 3-minute video segment rated.
Workers who are selected to continue rating videos in the
primary portion of the study will be compensated US $0.05 per
question answered per video segment, with the opportunity of
a bonus of US $0.05 per question if the answer aligns with the
clinician ratings for that question. These payment rates are
consistent with practices in crowdsourcing research studies in
the field of human-computer interaction, and our preliminary
studies have shown that the retention rate for this level of
compensation is >90% [10,42,49].

Gamified Data Curation

Description
We will develop novel gamified social experiences to curate
video data containing diagnostically rich information. Each of
these games will impose the structure required to extract salient
behavioral features that are comparable across peers. Each game
will involve 2 participants interacting on the web application
through both the game itself and socially through live video and
audio. During gameplay, each participant’s camera and
microphone will be turned on, and their video and audio will
be displayed in a Zoom-style [51] feed to the other participant.
The video and audio feeds will be recorded during each session,
in addition to keyboard strokes and mouse movements.

Each game will correspond to a subset of targeted behaviors for
data capture. The existing literature on “serious games” has
documented the usefulness of certain games to capture behaviors
related to psychiatric diagnostics, although these games are
usually single player. An example is a Go/No-Go game, where
the player presses the spacebar in response to a timed “go”
prompt in the presence of auditory and visual distractions. This
game has been shown to be a reliable estimate of attention,
impulsivity, hyperactivity, and executive functioning when
recording gaze behavior, response time, and correct reaction
rate [52]. We will modify the game so that the “go” prompts
are initiated by the social game partner rather than an automated
computer, allowing for the capture of socially relevant features.
The field of “serious games” for the assessment of psychiatric
behaviors is vast, and therefore, we will base all games on
previously published literature. However, many behavioral
features that we will study will not be tied to a particular game
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but will rather be observable as a by-product of the social
interactions between participants (eg, social anxiety).

One of 7 possible games will be administered each day. A
complete list of games and the corresponding behaviors that
each game is designed to measure is shown in Table 2.

Table 2. List of previously validated data capture games that have successfully generated data relevant for distinguishing the targeted psychiatric
conditions from neurotypical controls.

Targeted behaviorsGamea

Concentration, impulsivity, hyperactivity, executive functioning, and reaction timeGo/No-Go [52]

Process speed and motor activityAULA Nesplora [52]

Planning and organizationPlan-It Commander [52]

Working memory, cognition flexibility, and impulsivityBraingame Brian [52]

Emotion evocation and recognition and restrictive and repetitive behaviorsCharades [6]

Visual motor coordinationBalloon Popping [53]

Eye contact and face gazeSpot The Eyes and Face [53]

Social anxiety, difficulty with social skills, speech delays, and language narrativeFree-form conversationb

aAs the games themselves are not central to the innovation of this proposal, details of the gameplay can be found in corresponding references [6,52,53].
bFree-form conversation will naturally occur across all games.

The design of the games will be conducted in consultation with
a team of practicing clinical psychiatrists at the University of
Hawai‘i School of Medicine, including Dr Anthony Guerrero,
who is the chair of the Department of Psychiatry and who
specializes in digital technologies for pediatric and adolescent
psychiatry, as well as Dr Gerald Busch, who is an assistant
professor in the Department of Psychiatry and who has
experience with digital health solutions for psychiatry.

A minimum of 15 minutes of gameplay will be required each
day, although participants may elect to participate for longer.
To facilitate consistent data capture across possible computer,
microphone, and camera configurations, a pertinent step for
enabling comparisons across participants, a calibration program
will be developed that will require each participant to align the
camera’s zoom and their body position before each session. We
will extensively test the calibration procedure before the study.

Participant Recruitment and Management
We plan to recruit a total of 400 study participants, comprising
100 individuals formally diagnosed with ADHD, another 100
diagnosed with ASD, a further 100 diagnosed with both ASD
and ADHD, and 100 individuals evaluated and confirmed to
not have any socially related psychiatric conditions. Our
inclusion criteria are as follows: (1) adolescents aged between
14 and 18 (inclusive) years and (2) formally evaluated for
ADHD and ASD by a licensed clinician with available
documentation. The selection of the final 400 participants that
comprise our core data set will be based on the personal
information that participants are asked to disclose. Such
metadata will be used to ensure a data set that is balanced with
respect to race, ethnicity, and gender. The number of participants
is based on testing the ability of our system to discriminate
between groups of participants. As these groups are balanced,
we set the prevalence for binary classification between each
condition to 50%. Following a CI of 95%, an estimated theta
of 95% [42,48,49], and a width of 15%, the sample size to
compute the area under the receiver operating characteristic

curve (AUROC) should be 37 [54]. Considering that we have
400 participants, with 100 participants per group, this enables
us to follow a common 60:20:20 (train, validation and test ratio
respectively) randomized split on the data. That is, we have a
sample size (test set) of 40 participants to verify the system’s
ability to discriminate between the neurotypical participants
and the participants who were diagnosed with either ASD,
ADHD, or comorbid ASD and ADHD.

Although formal and well-established methods to perform power
calculations for ML analyses have yet to be established, most
digital diagnostics studies for conditions such as ASD include
<100 participants per class in binary classification [47]. We aim
to maintain a similar sample size per diagnostic category. The
digital social experiences will be delivered to study participants
for 15 minutes each day for a 3-week duration, with a single
game out of the 7 possible delivered each day. At least 3 distinct
15-minute sessions will be collected per game for each
participant, allowing for comparisons across days for analysis
of within-peer consistency.

Given the remote delivery of the data collection, a critical
challenge will be to ensure that all participants will have a social
partner when logging into the study system. The participants
will be asked to log in at a particular time each day to be
scheduled in advance of the first day of the study. We will host
10 separate time slots and 3 makeup time slots every day of the
study, and participants will be automatically matched with a
partner during log-in.

Evaluation
We will evaluate the data curation system for (1) compliance
of participants with respect to the study procedures during each
session and (2) global participation rates. To measure
compliance, we will run computer vision face detection
algorithms in conjunction with skeletal pose estimation using
MediaPipe [55] Python library to ensure that each participant’s
face, upper torso, and shoulders are fully visible and will
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calculate the percentage of valid frames across sessions per
participant. To measure participation across sessions, we will
record the total number of sessions with both participants and
the mean session time. In addition to these quantitative analyses,
we will run qualitative pilot user studies to understand
participants’experiences about the data collection game process,
including questions about the entertainment value provided by
the games, the usability of the participant matching and
scheduling system, and open-ended feedback.

Novel Crowd-Powered and Traditional ML-Based
Feature Extraction

Description
We will create 2 pipelines for converting raw video and audio
data into interpretable feature vectors that quantify social
behavior relevant to ADHD and ASD diagnostics. For behaviors
that can be feasibly quantified using computational methods,
we will use existing toolkits. For highly complex and nuanced
social behaviors that are beyond the scope of current ML tools
but that are highly relevant to psychiatric classification, we will
use a novel crowdsourcing pipeline to match crowd workers to
labeling tasks.

We will perform automatic feature extraction for behaviors
potentially related to diagnoses such as the percentage of total

conversation time contributed by the participant, eye gaze
patterns during the gameplay including the proportion of gaze
directed toward the game versus the live video feed of the other
participant, vocal prosody and intonation during conversation,
natural language processing analysis of the content of the
conversation after converting raw audio to text using
speech-to-text programs, and breaks in task flow as measured
by pauses in game-related keystrokes and mouse movements.
The extracted information will be stored for each frame at a
sampling rate of 5 frames per second. As depicted in Figure 2,
each of these features will be concatenated into a temporal
feature vector and used to train a time series DL model such as
a long short-term memory recurrent neural network or an
attention-based model (eg, transformers). There are existing
Python libraries that enable the proposed automatic behavioral
feature extraction such as OpenFace [56] and MediaPipe for
eye gazing. For facial emotion recognition, we will use Amazon
Rekognition [57], an AWS service that provides recognition of
disgust, happiness, surprise, anger, confusion, calmness, and
sadness in addition to other relevant facial features such as
whether the eyes and mouth are open. In the audio domain,
pitch will be extracted using the Convolutional Representation
for Pitch Estimation library [58], and waveforms will be
processed using the librosa library [59].

Figure 2. Feature extraction and quantification of behaviors relevant to neuropsychiatric diagnostics. LSTM: Long Short-Term Memory network.

For complex social features beyond the scope of automated
ML-powered computational processing, we will deploy a novel
crowdsourcing framework consisting of a crowd worker
profiling phase, followed by a study data tagging step. In the
first phase, we will post 20 tasks on Amazon Mechanical Turk,
each presenting a video acquired through pilot testing of the
gamified social data collection platform, followed by a series
of multiple-choice questions corresponding to items from the

diagnostic criteria for ADHD and ASD, as defined by the
DSM-5. Each task will correspond to a separate video, and there
will be 4 videos per diagnostic category used to quantify worker
abilities. Worker responses will be compared against the Clinical
Global Impression gold standard ratings provided by our
collaborators in the Department of Psychiatry at the University
of Hawai‘i. Crowd workers who align with the ratings of clinical
experts on at least 1 behavioral feature, where alignment is
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defined as <1 categorical ordinal deviation per 2 videos, will
be recruited to label the final study data from 400 participants.
Recruited workers will only label those features for which their

alignment with clinicians was demonstrated during the profiling
phase as shown in Figure 3.

Figure 3. Crowd worker assignment to labeling tasks. Each crowd worker will only be asked to label those features for which they agreed with clinicians
during a worker profiling step performed before the primary study.

A valuable by-product of this process will be the generation of
large behavioral multimedia data sets for ML of complex social
features, enabling improved artificial intelligence modeling of
human behavior more broadly. With explicit permission from
study participants on a per-video basis, we will package and
publish the collected data into novel computer vision, audio,
and natural language processing data sets for ML. These labeled
data sets will be released publicly, providing a stepping stone
toward improved automated methods for quantifying complex
human behavior.

Evaluation
To assess the effectiveness of the crowdsourcing pipeline, we
will compare the performance of crowd workers before and
after their recruitment. The preliminary data show that crowd
workers who answer similarly to clinicians during filtering
continue to perform in a similar manner on new, unseen videos.
We will also measure crowdsourcing metrics such as latency
to starting a task, interrater reliability, any decline in
performance with increased ratings, and the completion rate for
all assigned tasks. To evaluate the privacy-preserving
mechanisms, we will randomly assign each worker to a single
privacy condition per video, only asking them to rate the
unaltered videos after the ratings for the privacy condition have
been provided. We will measure the mean deviation from
clinician answers per privacy condition for each question.

Multicondition Diagnostics With Adaptive Input
Querying

Description
We will develop DL models for the multilabel classification of
ADHD and ASD, which can emit four possible outcomes: (1)
ADHD, (2) ASD, (3) ADHD and ASD, and (4) neither
condition. The models will also output the behavioral

characteristics that led to the final classification decision by
producing the 95% CI of each behavior as derived from both
crowd workers and automated computational models. This will
involve synthesizing multiple sources of inputs and
communicating the result to the end user in a manner that is
understandable to the patient or the caregiver. The confidence
scores will enable the model to adaptively request more data
from the patient and to be specific about which types of data
are needed.

To derive an interpretable quantification of each behavioral
feature, we will collect clinical categorical ratings of each
behavior by licensed psychiatrists at the University of Hawai‘i
at Mānoa. We will compensate the psychiatrists for their service
and will use the mean of the crowd worker responses as a
baseline method for deriving the interpretable quantification of
each behavior. Although this method could be sufficient, it is
possible that crowd workers have varying levels of rating
abilities depending on the qualities of the video and the qualities
of the crowd workers themselves. Therefore, we will explore
the use of the crowdsourced ratings themselves combined with
crowdsourcing metrics derived from worker performance and
the computationally generated behavioral features as collective
inputs into an ML model for each behavior. Such metrics will
include the time spent by each worker providing the annotations
for the video, worker rating history for each question, and
variability in the worker’s answers across videos and within a
particular video. It has been previously shown that these
crowdsourcing metrics and similar metrics have predictive
power in a crowd worker’s annotation quality [11]. We will test
whether the ML model is a better predictor than the
crowdsourced ratings alone. The loss function for the ML model
for individual behaviors will optimize with respect to the mean
clinician rating per behavior.

JMIR Res Protoc 2024 | vol. 13 | e52205 | p. 8https://www.researchprotocols.org/2024/1/e52205
(page number not for citation purposes)

Jaiswal et alJMIR RESEARCH PROTOCOLS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


To model the multilabel classification problem, we will create
separate binary classifiers for ASD and ADHD. Each model
will be optimized separately. In comparison with training distinct
binary classifiers, a single model trained in a multitask learning
setup is able to share parameters between the classification
tasks. This helps the model focus on distinguishing features
between conditions and has been found to reduce overfitting.
We expect that the multitask setting will decrease the number
of false-positive predictions by helping the model recognize
features that overlap between conditions.

Using a sigmoid activation function for each independent
classifier, the classification system will output a probability
score for each diagnostic possibility as well as each of the
behaviors defined by the DSM-5, which will be quantified by
the system.

Using the output scores of the DL model, an active learning
system will be developed that queries for additional data from
the user in a targeted manner by suggesting the next game for
the participant to play. For each participant, the algorithm will
measure the confidence score of each behavioral symptom and
produce a list of games for the user to play, sorted by the
classifier’s mean uncertainty of the behavioral symptoms each
game is designed to curate data for. Classifier uncertainty will
be measured by the entropy of each classifier’s output vector.
As neural networks are inherently uncalibrated, we will apply
a method published by Kuleshov et al [60] based on isotonic
regression to calibrate the probability estimates before measuring
uncertainty.

Evaluation
The diagnostic ML model will be evaluated using balanced
classification metrics including AUROC, area under the
precision-recall curve, balanced accuracy, precision, recall
(sensitivity), F1-score, and specificity. Performance and CIs
will be derived through Monte Carlo cross-validation, with each
data split consisting of 300 participants in the training set, 50
participants in the validation set, and 50 participants in the test
set. All splits will contain a balance with respect to the 5
diagnostic classes, age, gender, race, and ethnicity.

To evaluate the effectiveness of the active learning querying
system, we will run post hoc simulations comparing the random
selection of new data against targeted requests using active
learning. We will train the classification system with 12 sessions
of data, hold out the remaining 9 sessions, and plot the
performance of each metric against the number of additional
samples acquired using both active learning and random
selection of data segments.

Results

Gamified Data Curation
A preliminary version of the web interface has been
implemented (Figure 4). We are finalizing the features
corresponding to video and metadata recording for downstream
ML analysis. Over the course of this 5-year study, our objectives
are to complete the development of the study’s web system by
the end of year 1, begin initial recruitment in year 2, and
concurrently conduct human-in-the-loop ML analysis while
continuing recruitment from years 3 to 5.

Figure 4. Preliminary interface for the study’s central web platform. (A) Users who are not a part of the core user study where participant matchmaking
occurs can select their game play partner. (B) One of the implemented games, Charades.

Novel Crowd-Powered and Traditional ML-Based
Feature Extraction
We have conducted a series of preliminary studies testing the
use of crowdsourcing for precision behavioral health,
demonstrating that although there is a high degree of variability
in crowd workers’ innate ability to rate complex social behaviors
in unstructured home videos [10], there exists a small fraction
of crowd workers on platforms such as Amazon Mechanical
Turk who consistently rate in alignment with licensed clinical
experts [48,49]. In a study, we demonstrated that a group of 40

crowd workers filtered from an original pool of >1000 workers
was able to rate behaviors that, when fed into a classifier trained
on clinician records, achieved an AUROC of 0.9904 for one set
of features and 0.9872 for another feature set [42]. Our
experience of receiving approval from university IRBs and data
privacy offices as well as obtaining consent from families to
share their videos with crowd workers mitigates any risks related
to this novel process.

After applying privacy-preserving modifications to the videos,
such as pitch shifting the audio downward and using face
detection to box out the child’s face, the performance of the
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model remained >0.95 for both AUROC and area under the
precision-recall curve [42]. Although these results show promise
for predicting autism in a binary task, they are likely to decline
in accuracy when expanding to include ADHD as a diagnosis
too. These studies provide strong evidence to support the
proposed worker matching procedure, which will enable the
more nuanced feature space required for multicondition
classification. The prior experience in developing automated
pipelines for managing crowd workers will help streamline the
development of the crowd management scripts.

The feasibility of the automatic feature extraction steps comes
from the existing packaging of the required functionalities into
Python libraries and the high documented performance of these
tools. All the ML-powered feature extractors we have used are
well documented.

Multicondition Diagnostics With Adaptive Input
Querying
In 1 of our preliminary experiments involving 4-way ASD or
ADHD classification (only ASD vs only ADHD vs both vs
none) using publicly available survey data, a decision tree
classifier achieved an F1-score of 0.75 and Hamming loss of
0.23. The final data set consisted of 270,978 data points and 60
columns, with which we attempted multiple feature selection
methods such as recursive feature elimination, decision tree
feature importance scores, and logistic regression coefficients
to quantify the strength of the relationship between the predictor

variables and target variables. Across all 3 methods, the
highlighted behavioral features were difficulty in making or
keeping friends; difficulty in dressing or bathing; having
behavioral problems; having difficulty concentrating,
remembering, or making decisions; having anxiety; arguing too
much; and sharing ideas or talking about things that really
matter. On the basis of these observations, we believe that the
games targeting behavioral and motor skills, mentioned in Table
2, can support the research findings and generate relevant data.
We will modify the currently implemented games to specifically
target these newly identified behavioral features.

The feasibility of DL models relies on the underlying data used
to train them. DL has the capacity to learn any discriminative
function, provided it has a large enough model and adequate
computational power to train a large model. University of
Hawai‘i at Mānoa has provided us with a dedicated Nvidia v100
graphics processing unit node and a dedicated Nvidia RTX5000
[61] for computationally intensive research. In addition, the
Hawai‘i Data Science Institute has shared computing resources
consisting of 346 nodes (8500 cores) with 63.19 terabyte of
RAM, 120 graphics processing units, and >1 petabyte of storage.
These resources are free to use for University of Hawai‘i
laboratories. Collectively, these resources are more than
sufficient to train DL models for the proposed data set size.

We have previously trained DL models for making a binary
prediction of ASD (Table 3).

Table 3. Preliminary data supporting the use of multimedia data from social games to predict autism spectrum disorder.

Prediction performanceData modality

AUROCa: 0.815 (0.077 or −0.077)Audio

Balanced accuracy: 71%Facial emotion

Recall: 66.2%; precision: 63.5%Eye gaze

aAUROC: area under the receiver operating characteristic curve.

Although each of these models used a single data modality
(audio, facial emotion expression, or eye gaze), their
performances were on par with prior literature [47]. We
hypothesize that incorporating additional modalities will not
only allow for increased performance within a single class but
will also enhance discriminative power across diagnostic
categories.

Discussion

Principal Findings
There is a great need for improved, scalable, and accessible
diagnostic assessments for neuropsychiatric conditions that
require accurate and extensive evaluations. We propose to use
a multimodal ML model to study heterogeneous psychiatric
conditions through human-in-the-loop computing. Although
DL models have been able to successfully classify participants
with ASD from their neurotypical peers in prior work, the
human-in-the-loop observations can help extract a more nuanced
feature subset for the diagnosis of similar yet distinct conditions.
We have deployed an initial set of games on the web interface

targeting behavioral features, and we have extracted a subset
of core behavioral features that aligns with the proposed games
and can thus help us to effectively target our digital diagnostic.
The crowd worker ratings appear to be of high quality based on
our prior studies, aligning with the computationally extracted
features and clinician’s records, even after the videos are
modified. Moreover, the reduced feature subset extracted using
preliminary studies from multiclass classification of publicly
available survey data has helped us identify the core behavioral
features that we intend to target through our gamified approach.

This study aligns with multiple previous works [1,2,5-11,15-41]
where the researchers worked with single-modality data to
capture the phenotypic behaviors of ASD, ADHD or both. These
studies were not only limited by the availability of social
features but also by the small size and lack of diversity in the
data set [1]. By contrast, our study encompasses several sources
of information such as facial emotion, body movements, audio
streams, and crowd worker ratings that will improve the
predictive capability of the model for comorbid diagnosis and
capture the overlapping features. Through this study, we aim
to bridge the gap posed by diagnostic and therapeutic challenges
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in psychiatry using ML techniques. Such noninvasive studies
can better use the complex social behaviors to characterize
behaviors specific to ASD and ADHD.

The technical aspects of the project are highly feasible, with
modest development requirements compared with modern
real-time computer gaming systems. The web server will be
developed using the Django Python framework [62] and hosted
on an Elastic Compute Cloud (EC2) instance [63] on AWS,
with extensive existing functionality and documentation existing
for all technologies used. Extensive codes are available on the
internet for implementing the video and audio chat features. A
full-time developer, an engineering or computer science student,
or a postdoctoral researcher can implement the entire system
within the span of 4 person-months.

Limitations
Although our initial findings are optimistic, there are some
limitations to the study. The primary challenge will be the
recruitment and retention of 400 study participants, including
the formal clinical validation of the diagnosis for each
participant. Although this study can be successfully completed
with fewer participants, smaller data sets can affect the model’s
learning capability, leading to overfitting, noisy outliers, or
sample bias. To help manage this recruitment effort, we will
hire a full-time clinical research coordinator to recruit and
manage the participants. We will work with the clinical
collaborators in the Department of Psychiatry to recruit in
Hawai i’s psychiatric clinics, where our collaborators and their
colleagues practice. This will be supplemented with web-based
recruitment using targeted advertisements on social media. We
have discussed this recruitment plan and desired study size with
our collaborators in the Department of Psychiatry, and we hold
recurring monthly meetings to strategize about participant
recruitment using both our existing access to several clinics in
Hawai i and web-based targeted recruitment. In addition, our
former mentor and collaborator, Dr Dennis Wall at Stanford
University, has access to hundreds of families with adolescent
children diagnosed with ASD as well as comorbid ADHD. He
is the founder of Cognoa [53,64-69], an artificial
intelligence–based digital diagnostic tool for studying early
childhood development and pediatric behavior.

There might be technical challenges associated with web
applications or user interfaces, which may occur at later stages
of the study. The proposed data curation game platform may
lack qualities that would garner repeated participant engagement
over a 3-week period, such as poor user interface design, poor
design of the automated notification system, or poor
entertainment quality of the individual games. To mitigate this
risk, we will run several iterative design sessions regarding
proper implementation of the design process to maximize both
user engagement and high-fidelity data collection. We will run
several pilot studies to obtain both qualitative and quantitative
measures of engagement before running the primary data
collection study.

The other potential pitfalls are compliance and tardiness. We
will run automated computer vision checks in real time to ensure
participant compliance with camera calibration requirements.
Another script will send automated text messages and email

reminders to late participants, assigning them to makeup
sessions. If these mitigation steps fail or if recruitment is
unsuccessful and there are <100 participants with valid data per
diagnostic category, the study can still be successful with as
few as 20 participants per class, as ML studies with
approximately 20 participants per diagnostic category have
frequently been published in the field [47].

There are also limitations associated with crowdsourcing based
on the expertise of the crowd workers or their temporal
availability. Although this never occurred during preliminary
data collection, a potential pitfall is that some questions may
have no workers who consistently rate them in accordance with
clinicians. If this occurs, then that question will be removed
from any further components of the study (ie, removed as a
feature for the diagnostic classifier).

In crowdsourcing, scaling the number of workers does not
correlate with the time spent on recruitment. However, to ensure
high-quality annotations, we do anticipate spending a
considerable amount of time recruiting crowd workers. As
mentioned previously, we plan a crowd worker profiling phase
based on 20 tasks and data collected through pilot studies with
our data-gathering platform. By periodically posing a
gold-annotated question and providing a monetary bonus for
correctly answering such questions, we incentivize workers to
provide high-quality answers. On the basis of our prior studies,
we expect that the level of compensation will lead to a worker
retention rate of >90%. Furthermore, to account for the loss of
workers, we will recruit 3 times more crowd workers than is
minimally required for the study. With regard to the number of
crowd workers required, we follow the study by Roitero et al
[70]. As such, the recommended number of workers will be
estimated based on a small amount of data collected during our
pilot studies.

When verifying the automatically extracted computational
features manually, it is possible that some features will be
incorrect. Computational feature extraction approaches are not
perfect and are not necessarily robust to unforeseen conditions
(eg, dim lighting, obfuscation of certain body parts, and
unfamiliar accents). If any feature is consistently unreliable
across several participants, then we will remove that feature
from the study. There are sufficient features available, so if
some do not function as intended, the study can still proceed.

It is possible that the large number of features used to train the
DL classification models will be overfitted to the training set,
as a data set of 400 samples (of which approximately 300/400,
75% would be in the training set) is relatively small for ML and
is unlikely to capture all the intricacies of social behavior that
can be expressed with the feature space. If this happens, we will
run feature selection and dimensionality reduction algorithms
to reduce the number of features used in the model to a
minimum viable set and to summarize the feature space in a
low-dimensional manner, respectively. The feature selection
will enable interrogations into which features are most useful
in the differentiation of each condition.
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Conclusions
Given the complex nature of neuropsychiatric conditions, ML
models can greatly reduce time to diagnosis, for example, by
identifying salient information in support of establishing a
diagnosis through a low-cost and remote data collection

approach. Multimodal data with human-in-the-loop
crowdsourcing may improve not only digital diagnostics but
also our understanding of the complexity of the conditions. The
crowd workers’ annotation can also provide data for other
computer vision tasks, serving as a promising tool for genetic
association, psychological, and kinematic studies.
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