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Abstract

Background: Multimorbidity, defined as the coexistence of multiple chronic conditions, poses significant challenges to health
care systems on a global scale. It is associated with increased mortality, reduced quality of life, and increased health care costs.
The burden of multimorbidity is expected to worsen if no effective intervention is taken. Machine learning has the potential to
assist in addressing these challenges since it offers advanced analysis and decision-making capabilities, such as disease prediction,
treatment development, and clinical strategies.

Objective: This paper represents the protocol of a scoping review that aims to identify and explore the current literature
concerning the use of machine learning for patients with multimorbidity. More precisely, the objective is to recognize various
machine learning models, the patient groups involved, features considered, types of input data, the maturity of the machine
learning algorithms, and the outcomes from these machine learning models.

Methods: The scoping review will be based on the guidelines of the PRISMA-ScR (Preferred Reporting Items for Systematic
Reviews and Meta-Analyses Extension for Scoping Reviews). Five databases (PubMed, Embase, IEEE, Web of Science, and
Scopus) are chosen to conduct a literature search. Two reviewers will independently screen the titles, abstracts, and full texts of
identified studies based on predefined eligibility criteria. Covidence (Veritas Health Innovation Ltd) will be used as a tool for
managing and screening papers. Only studies that examine more than 1 chronic disease or individuals with a single chronic
condition at risk of developing another will be included in the scoping review. Data from the included studies will be collected
using Microsoft Excel (Microsoft Corp). The focus of the data extraction will be on bibliographical information, objectives, study
populations, types of input data, types of algorithm, performance, maturity of the algorithms, and outcome.

Results: The screening process will be presented in a PRISMA-ScR flow diagram. The findings of the scoping review will be
conveyed through a narrative synthesis. Additionally, data extracted from the studies will be presented in more comprehensive
formats, such as charts or tables. The results will be presented in a forthcoming scoping review, which will be published in a
peer-reviewed journal.

Conclusions: To our knowledge, this may be the first scoping review to investigate the use of machine learning in multimorbidity
research. The goal of the scoping review is to summarize the field of literature on machine learning in patients with multiple
chronic conditions, highlight different approaches, and potentially discover research gaps. The results will offer insights for future
research within this field, contributing to developments that can enhance patient outcomes.
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Introduction

Background
According to the World Health Organization, multimorbidity
is characterized as the coexistence of 2 or more chronic
conditions in a single individual. These chronic conditions are
often long-term health conditions that require complex and
ongoing care [1]. Chronic diseases include both mental and
physical health conditions [2]. In the context of multimorbidity,
no single chronic condition is necessarily more central than the
others, as this could result in designating one condition as the
index condition, where a more appropriate term would be
comorbidity [2-4].

On a global scale, approximately one-third of adults, and over
half of all adults with any chronic condition, already experience
multimorbidity [5]. The occurrence of multimorbidity increases
with age [5-7], with projections showing a doubling of
individuals aged 60 years and older globally before 2050; the
number of persons with multimorbidity is also expected to rise
dramatically [5,8].

In Denmark, a report from 1 of the 5 regions responsible for
delivering health care (Region Zealand) concludes that in 2022,
there were approximately 1.2 million people with multimorbidity
in Denmark, which corresponds to 26% of the population [9].
This number is expected to increase by 1.4% annually to 1.5
million in 2050 if no efforts are made to improve the
population’s health [9].

Multimorbidity is linked to an increased likelihood of premature
death [10,11]. This risk escalates with both the quantity of
conditions and the particular combinations of chronic diseases
[10,11]. Multimorbidity also lowers quality of life, which gets
worse as you have more chronic diseases [11-14]. It
disproportionately affects individuals with low socioeconomic
status, contributing to increased health inequality [5,15-17], and
is also associated with more mental symptoms and a greater
perception of fragmented care [10,11]. Multimorbidity is also
responsible for higher health care expenditure due to longer
hospital stays and larger medication consumption [12,18].

There exist several risk factors associated with the development
of multimorbidity including sociodemographic factors (eg, age,
household income, and education) [5,14], biomedical risks (eg,
overweight, high blood pressure, high cholesterol, and genetic
predispositions), and health behaviors (eg, physical inactivity,
poor nutrition, smoking, and alcohol consumption) [19,20].
Additionally, certain chronic conditions may share common
risk factors, or one disease may be a risk factor for another [21].

However, in contrast to patients with single diseases, there is a
complex relationship between risk factors and multimorbidity
[22]. For example, according to a report from the Australian
government [23], there is a correlation between the number of
chronic conditions a person has and the likelihood of having
multiple risk factors [23].

Nonetheless, without the information regarding the duration of
an individual’s exposure to risk factors and the onset of their
chronic condition, attributing their chronic conditions solely to
the number of risk factors is not possible. This is due to the
onset of some chronic conditions possibly motivating people
to change their behavior for the better. For instance, when a
person is diagnosed with chronic obstructive pulmonary disease
(COPD), it may inspire them to quit smoking and thereby reduce
the risk of exacerbating COPD and cancer. In contrast, a person
diagnosed with COPD will not be motivated to engage in
physical activity, which would then increase the risk of, for
example, diabetes [19-21].

As a result of the complexity of the risk factors, clinical
decisions for patients with multimorbidity are a complicated
and challenging task since the health care system is primarily
designed to manage patients with a single disease [24].

Understanding the patterns and factors associated with
multimorbidity, particularly the modifiable factors, can help
contribute to the prevention and treatment of multiple chronic
diseases [24,25]. Predictive analytics, such as machine learning,
has the potential to solve these kinds of problems [26]. It enables
more advanced analysis, automation, and recognition of
unidentified patterns [27]. Machine learning enables systems
to learn and improve from experience without explicit
programming. It involves the process of fitting one or more
statistical models to a given data set that contains both
explanatory variables and an outcome variable. The models
provide coefficients that quantify the relationship between the
explanatory variables and the outcome. These model coefficients
are applied to predict the same outcome with the same
explanatory variables but on new, unseen data. The model’s
ability to predict the outcome depends on its capacity to
recognize and apply statistical patterns found in the data while
it is being trained [27,28].

In health care, machine learning has demonstrated improvements
in various tasks, including drug discovery [29], histopathological
diagnosis [30], brain magnetic resonance imaging segmentation
[31], and disease prediction using electronic health records
[32,33]. In the context of machine learning for multimorbidity,
there are numerous options and choices when developing an
algorithm that are relevant. Combinations of disease groups
have the potential to uncover new mechanisms of diseases,
develop treatments, develop multidisease clinical strategies,
meet the patient’s needs, and manage polypharmacy [34,35].
For instance, Prados-Torres et al [36] have identified 3 common
multimorbidity clusters: cardiovascular and metabolic diseases,
mental health problems, and musculoskeletal disorders.

Different outcomes have also been addressed in the literature,
such as predicting a new disease for patients with multimorbidity
[25,37,38], identifying factors for multimorbidity [39,40],
predicting rehospitalization [41], and developing a
multimorbidity frailty index [42]. Furthermore, a variety of
different machine learning models have been used, for example,
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logistic regression [37,39,40], random forest [25,41,42], neural
network [37,40], and network model [38]. It is also evident that
a wide range of features have been applied in developing these
machine learning algorithms. These features include
sociodemographic data [25,41,42], electronic health record data
[39,41], self-reported data [40], and medical data [38,39,42],
among others.

The literature indicates ongoing research and a growing interest
in the field of multimorbidity. However, the type and amount
of evidence remain unclear as well as potential gaps in the
literature [25]. Therefore, a scoping review was chosen to
identify and map available evidence within this field.

Review Objective
The objective of this scoping review is to explore the existing
literature regarding the use of machine learning in the context
of multimorbidity. Specifically, it seeks to identify the machine
learning models that have been used, the patient groups that
have been the focus in various studies, the features, types of
input data, the maturity of the algorithms, and outcomes that
have been in focus. In doing so, any potential gaps in research
or knowledge can be identified.

Methods

Ethical Considerations
Ethics approval is not required, as this scoping review does not
involve primary data collection from human participants.

Study Design
The development of this protocol has followed the guidelines
from Joanna Briggs Institute [43]. The conduct and reporting
of this scoping review will follow the guidelines of the
PRISMA-ScR (Preferred Reporting Items for Systematic
Reviews and Meta-Analyses Extension for Scoping Reviews)
[44]. Furthermore, the review will follow the methodological
framework for scoping reviews outlined by Peters et al [45],
which provides guidance in the development and execution of
a scoping review.

Search Strategy

Overview
To identify appropriate search terms, keywords, and index terms,
a preliminary search will be conducted. The initial search will
identify text words that can be applied in the subsequent
systematic search. The search strategy will be adjusted to the
requirements of each database and will include a range of related
terms, synonyms, acronyms, and spellings. Furthermore, various
search functions, such as thesaurus, Boolean operators,
truncation, phrase searching, and free-text searching, will be
applied to optimize the searches. The searches will be done in
the databases PubMed, Embase, IEEE, Web of Science, and
Scopus.

After conducting the searches, all studies that meet the inclusion
criteria will be compiled and imported into Covidence (Veritas
Health Innovation Ltd), which is a reference management
software. Here, duplicate entries are eliminated. The eligibility
of titles and abstracts will be screened by one reviewer under

the supervision of another reviewer. Subsequently, full text will
be individually evaluated by the 2 reviewers. Any discrepancies
will be resolved through discussion or involvement of a third
reviewer. The exclusion of full-text studies and the reason for
exclusion will be reported in the final scoping review. The
results of the search will be presented in a PRISMA (Preferred
Reporting Items for Systematic Reviews and Meta-Analyses)
flow diagram and fully reported in the final scoping review. As
recommended by Joanna Briggs Institute, this scoping review
will apply the PCC (participants, concept, context) framework.

Participants
The scoping review will consider studies that involve patients
with multiple chronic conditions. Since multimorbidity and
comorbidity have been applied interchangeably in the literature,
both terms will be included. There are no restrictions on the
types of diseases included, as long as they meet the criteria for
chronic diseases, which are characterized by lasting for a
prolonged period and often progressing over time. Research
that focuses on individuals with at least 2 chronic diseases or
studies that examine individuals with a single chronic disease
at risk of developing another will be considered in this study.

Concept
This scoping review will consider studies that evaluate machine
learning models applied on a population diagnosed with
multimorbidity. This includes supervised learning methods,
such as logistic regression, support vector machine, decision
tree, random forest, or neural network.

Context
This scoping review will consider studies concerning either on
the diagnosis, treatment, monitoring, or prediction of diseases
in patients with multimorbidity.

Inclusion and Exclusion Criteria
Studies that examine patients with more than 1 chronic disease
or individuals with a single chronic disease who are prone to
developing another will be included in this study. A chronic
disease is defined as a long-term health condition that
necessitates complex and continuous medical care, which either
can be mental or physical health conditions [1].

Due to the interchangeable use of the 2 terms multimorbidity
and comorbidity in the literature, both terms will be considered
in this study. Additionally, only studies using supervised
learning algorithms will be considered. Supervised learning
algorithms are trained on labeled data, allowing them to learn
from examples with known input-output pairs.

This scoping review will consider all study types and aims to
find published and unpublished studies. Furthermore, studies
with full text and free full text will be included, since there is
an interest in looking at their process, such as input data,
methods, model, and outcome. Full-text studies published in
all languages will be considered, provided there is an abstract
available in English, French, Spanish, or German.
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Results

To ensure all relevant results are extracted from the identified
studies, a template based on Aromataris et al [46] with extraction
fields is adapted to suit our specific requirements. These can be

seen in Textbox 1. For managing and screening references,
Covidence will be used. For data extraction, Microsoft Excel
(Microsoft Corp) will be applied. Data will be extracted by 2
reviewers, including information about the study population,
method, medical application, and outcome.

Textbox 1. Overview of extraction fields for data retrieval from the identified studies. Inspired from Joanna Briggs Institute methodology guidance for
scoping reviews [46].

Extraction fields

• Authors

• Publication year

• Source of origin or country of origin

• Objective

• Study population or type of patient with multimorbidity and sample size

• Medical application

• Type of input data

• Type of algorithm

• Maturity of the algorithm

• Performance

• Validation of algorithm

• Outcomes

• Key findings that relate to review question

The data that have been extracted from the included studies will
be presented in either tabular or diagrammatic format, depending
on what is most suitable. These will also be supported by
narrative descriptions. The key findings that relate to the review
question will be analyzed thematically. Any emerging themes
and subthemes will be depicted in a diagrammatic or alternative
visual format that is appropriate.

Discussion

Principal Findings
Multimorbidity is a global challenge for the health care system
since it is associated with increased mortality, reduced quality
of life, and increased health care costs. With the increasing
prevalence, the problem is only growing. Machine learning has
the potential to address these challenges, as these methods can
understand the patterns and factors associated with
multimorbidity. This scoping review aims to explore and
synthesize the current literature addressing the use of machine
learning in the context of patients with multimorbidity.

Following the definition of a scoping study established by
Arksey and O’Malley [47], this scoping review serves 2 primary
objectives. It aims to compile and communicate research
findings to policy makers, practitioners, and consumers. Besides
that, it will also pinpoint any existing research gaps within the
literature [47]. The available literature indicates ongoing
research into the application of machine learning within the
context of multimorbidity. Unfortunately, there is uncertainty
regarding the type and quantity of evidence as well as potential

knowledge gaps. To our knowledge, this may be the first scoping
review in this field to uncover this.

The insights gained from this scoping review can be valuable
for both researchers and health care practitioners. For
researchers, understanding the current landscape of machine
learning methods can provide a foundation for future studies
by stimulating new research questions and help to identify
research gaps. Health care practitioners can gather awareness
of the current state of machine learning use in multimorbidity
research. Overall, the findings from this scoping review can
contribute to more precise interventions, ultimately improving
patient outcomes.

Limitations
Nevertheless, the scoping review may have some limitations
regarding the search strategy. The scoping review follows the
PCC framework, where including the last block (context) may
potentially constrain the search outcomes. A potential solution
is only to use the first 2 blocks (participants and concept),
although this approach may introduce more noise into the search
results. However, this might not pose an issue, as the last block
(context) is comprehensive due to the included search words
within the block.

A particular challenge in this field is the interchangeable use of
the terms “multimorbidity” and “comorbidity” in the literature.
To address this issue, the participant search block in the PCC
framework contains synonyms for both terms. This ensures the
retrieval of relevant studies and accounts for potential variations
in terminology across the literature. Besides that, it also captures
a broader spectrum of research related to patients with multiple
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chronic conditions. A disadvantage of this approach is the
potential for more noise and irrelevant results.

Whether there is a need for quality assessment of the included
studies can be discussed. Typically, this is not done in a scoping
review, as the objective is to provide an overview of the
evidence rather than a critically appraised and synthesized
response to a specific question [48-50]. On the other hand, using
tools such as the Prediction Model Risk of Bias Assessment,
which is designed for systematic reviews, could provide insights
into the quality of prediction models [51]. Being aware of this,
this study will follow the typical approach for conducting
scoping reviews, and thereby not conduct a quality appraisal of
the included studies.

Conclusions
The primary objective of this scoping review is to investigate
the existing literature on machine learning in patients with

multiple chronic conditions and potentially highlight research
gaps. To our knowledge, this scoping review marks the initial
exploration into the application of machine learning in
multimorbidity research.

The outcome of the searches will be presented following the
PRISMA-ScR checklist and flow diagram, which will provide
a comprehensive overview of the search process, including the
number of identified studies, duplicates removed, screened
studies, excluded studies, and studies included in the review.
A conclusive summary based on the results of the scoping
review will be presented, and recommendations for future
research will be suggested if any possible knowledge gaps are
identified. The potential findings of the scoping review will be
reported in an academic paper, which will be submitted to a
peer-reviewed journal and presented at a national conference.

Data Availability
Data sharing is not applicable to this paper as no data sets were generated or analyzed during this study.
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