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Abstract

Background: Referred to as the “silent killer,” elevated blood pressure (BP) often goes unnoticed due to the absence of apparent
symptoms, resulting in cumulative harm over time. Chronic stress has been consistently linked to increased BP. Prior studies
have found that elevated BP often arises due to a stressful lifestyle, although the effect of exact stressors varies drastically between
individuals. The heterogeneous nature of both the stress and BP response to a multitude of lifestyle decisions can make it difficult
if not impossible to pinpoint the most deleterious behaviors using the traditional mechanism of clinical interviews.

Objective: The aim of this study is to leverage machine learning (ML) algorithms for real-time predictions of stress-induced
BP spikes using consumer wearable devices such as Fitbit, providing actionable insights to both patients and clinicians to improve
diagnostics and enable proactive health monitoring. This study also seeks to address the significant challenges in identifying
specific deleterious behaviors associated with stress-induced hypertension through the development of personalized artificial
intelligence models for individual patients, departing from the conventional approach of using generalized models.

Methods: The study proposes the development of ML algorithms to analyze biosignals obtained from these wearable devices,
aiming to make real-time predictions about BP spikes. Given the longitudinal nature of the data set comprising time-series data
from wearables (eg, Fitbit) and corresponding time-stamped labels representing stress levels from Ecological Momentary
Assessment reports, the adoption of self-supervised learning for pretraining the network and using transformer models for
fine-tuning the model on a personalized prediction task is proposed. Transformer models, with their self-attention mechanisms,
dynamically weigh the importance of different time steps, enabling the model to focus on relevant temporal features and
dependencies, facilitating accurate prediction.

Results: Supported as a pilot project from the Robert C Perry Fund of the Hawaii Community Foundation, the study team has
developed the core study app, CardioMate. CardioMate not only reminds participants to initiate BP readings using an Omron
HeartGuide wearable monitor but also prompts them multiple times a day to report stress levels. Additionally, it collects other
useful information including medications, environmental conditions, and daily interactions. Through the app’s messaging system,
efficient contact and interaction between users and study admins ensure smooth progress.

Conclusions: Personalized ML when applied to biosignals offers the potential for real-time digital health interventions for
chronic stress and its symptoms. The project’s clinical use for Hawaiians with stress-induced high BP combined with its
methodological innovation of personalized artificial intelligence models highlights its significance in advancing health care
interventions. Through iterative refinement and optimization, the aim is to develop a personalized deep-learning framework
capable of accurately predicting stress-induced BP spikes, thereby promoting individual well-being and health outcomes.
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Introduction

How This Research Benefits the People of Hawaii
According to the Department of Health Chronic Disease
Prevention and Health Promotion Division, 1 in every 3 adults
in Hawaii has been diagnosed with hypertension [1]. Mortality
rates associated with heart disease are particularly high for
Native Hawaiian and Other Pacific Islander populations, leading
to 628 deaths per 100,000 residents as opposed to 154 deaths
per 100,000 residents among Asian residents and 167 deaths
per 100,000 among White residents in Hawaii [1].

A recent study conducted by researchers at the John A Burns
School of Medicine found that Native Hawaiian and Other
Pacific Islander individuals under a physician’s care for
hypertension experienced an 18.3 point drop in systolic blood
pressure (BP) on average when participating in a 12-week hula
program [2,3]. This study provides strong evidence that
stress-reducing interventions can reduce hypertension in Native
Hawaiian individuals. We hope to build upon this foundational
research by leveraging consumer devices (ie, Fitbit) to detect
moments of high stress and to provide just-in-time interventions
that are culturally grounded. The first step of this long-term
research plan is to develop the artificial intelligence (AI) that
will power the digital intervention, and that first step is the focus
of this grant proposal.

Clinical and Unmet Needs
Hypertension is an indirect cause of hundreds of thousands of
annual deaths in the United States alone [4]. Known as the
“silent killer”[5], elevated BP often remains unnoticed by
affected individuals due to a lack of perceptible symptoms,
resulting in accumulated harm over the years. While several
causes of hypertension are related to an underlying health
condition such as kidney disease, diabetes, sleep apnea, or
hormone problems [6]; health condition; and medications
combined only account for roughly 1 in 20 cases [7]. Chronic
stress has been repeatedly documented to increase BP [8-10].

Prior studies have found that elevated BP often arises due to a
stressful lifestyle, although the effect of exact stressors varies
drastically between individuals. Due to the heterogeneous nature
of both the stress and BP response to a multitude of lifestyle
decisions, it can be difficult if not impossible to pinpoint the
most deleterious behaviors in a personalized manner using the
traditional mechanism of clinical interviews. Passive sensing
technologies deployed on consumer devices have the potential
to disrupt this status quo in a positive manner. By continuously
monitoring a patient’s lifestyle in naturalistic settings, digital
technologies can provide clinicians and patients alike with
actionable insights into their health trends with fine-grained
precision.

We are interested in the use of wearable technologies to sense
cardiovascular signals, as they are noninvasive and are already
widely adopted. We will develop machine learning (ML)

algorithms that analyze these biosignals to make real-time
predictions about BP spikes. The resulting predictions could be
used to alert, in real time, patients about unintentionally adverse
behaviors as well as clinicians about the frequency of such
behaviors. There is a critical opportunity and need to improve
diagnostics for repeat health events to enable clinicians to
monitor their patients and forecast future issues.

Innovation
There are countless situations in health care and biomedicine
where vast amounts of unlabeled data are collected from a single
patient [11]. Annotations for the event of interest are frequently
sparsely dispersed. The development of predictive supervised
ML models is infeasible in such circumstances, as classical
approaches cannot handle the complexity of the data and modern
deep learning approaches require vast amounts of data [12]. For
example, continuous readings from continuously worn glucose
monitors can provide enough input data to train a model to make
a prediction about patient energy based on glucose, but it is
impracticable to require users to log their perceived energy at
the same sampling frequency as a wearable device. Similar
situations arise from data collected by consumer wearable health
devices (eg, smart watches), smartphones, and other devices
that measure biological signals.

To support AI development in these situations where vast
longitudinal data are collected with minimal human-provided
annotations, we propose the development of personalized ML
models that are trained solely on an individual’s unlabeled data
to learn feature representations that are specific to their baseline
temporal dynamics. We will train these models with a novel
data set of Fitbit biosignals and corresponding BP readings
(Figure 1). We are creating a novel method and framework,
which has never been explored in health care, consisting of
pretraining neural networks to learn the temporal dynamics of
a patient’s biosignals. This method will enable powerful, deep
networks to be trained using relatively small data sets, which
would not be possible without the self-supervised approach
proposed here. From a usability standpoint, patients will only
be required to provide tens of annotations tens of times to get
a personalized predictive model.

While we propose to apply this new technological innovation
toward the prediction of cardiac signals, multimodal time-series
personalization can be applied to a variety of other biology and
health problems where (1) multiple signals are emitted, (2) the
baseline signal patterns are specific to each individual or
organism, and (3) it is infeasible to acquire the vast amounts of
labels required to train a supervised deep learning model from
scratch. Examples of future apps of the proposed methodology
include predictions stemming from nanopore signal data or
multielectrode neuronal recordings. This method has the
potential to dramatically advance the field of precision health
care by enabling reliable ML predictions from massive but
mostly unlabeled data sets which are trained in a self-supervised
manner on data from a single user.
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While this novel methodology could be applied to myriad
domains within health and biology, a natural application is the

prediction of cardiac events from wearable biosignals data. We
will focus on high BP.

Figure 1. We will collect wearable biosignals from a Fitbit and use them to predict BP as measured by an Omron HeartGuide wearable BP monitor.
We will use personalized self-supervised learning to enable the prediction of BP using minimal samples from the end user. BP: blood pressure; HR:
heart rate.

Dissemination Plan
We plan to disseminate our research findings through a
combination of (1) research publications in journals, (2)
presentations at conferences, (3) as preliminary data for an
National Institutes of Health (NIH) R01 application, and (4) as
the basis of community-based participatory design sessions
where we iteratively develop a culturally informed digital
intervention using the AI created in this project. Target journals
for submission include Nature Digital Medicine, Science
Translational Medicine, Institute of Electrical and Electronics
Engineers (IEEE) Transactions on Affective Computing, PLoS
Digital Medicine, and Cell patterns. Target conferences include
the American Medical Informatics Association (AMIA) Annual
Symposium, the Pacific Symposium on Biocomputing (PSB),
and the Conference for Computer-Human Interaction (CHI).
There are several notices of special interest posted by the NIH
that would support a large R01 grant application using the
preliminary data from this work.

Specific Aims
We propose the following specific aims: (1) aim 1: create a
novel data set of wearable sensor data and corresponding BP
measurements, (2) aim 2: develop a personalized self-supervised
pretraining procedure for time-series data using both contrastive
learning and masked predictions, and (3) aim 3: develop a novel
personalized pretraining procedure which exploits the
multimodal nature of wearable time series-data.

Methods

Recruitment
We will recruit 40 carefully selected participants with diagnosed
hypertension and self-reported stressful lifestyles to each
participate in a 4-week remote data collection period. Each
participant will wear an Omron HeartGuide BP wearable device
and a Fitbit Sense 2 wearable watch during all waking hours
for at least 15 hours each day. Apart from wearing the devices
and periodically syncing the data to the cloud, participants will
be asked to follow their normal routine for the duration of the
study.

We will recruit adults aged 30 to 70 years in the state of Hawaii
who have been diagnosed with hypertension and self-identify
as living a high-stress lifestyle. Given the diversity of the
population of Hawaii [13], we aim for the following
demographic composition of our participants: 23% White, 37%
Asian, 11% Native Hawaiian or Pacific Islander, 7% Black or
African American, and 22% of 2 or more races. Approximately
9.5% of the recruited population will have Hispanic or Latino
ethnicity.

PW has a network of clinical collaborators at the John A Burns
School of Medicine at the University of Hawaii at Mānoa who
also practice at local medical centers such as Queen’s Medical
Center and Kaiser Permanente’s branch in Hawaii. We will
recruit using the following sources: (1) direct recruitment from
the Hawaii Pacific Health Center, which the collaborators at
the Department of Psychiatry at the University of Hawaii are
affiliated with and where they practice clinically; (2) via flyers
and emails at the clinics which the Department of Psychiatry
at the University of Hawaii regularly provides inpatient and
outpatient psychiatric services and consultation at, including
The Queen’s Medical Center, Kapi olani Medical Center for
Women and Children, and Hawaii State Hospital Community
mental health centers on Hawaii Island, Moloka i, Maui, Kaua i,
and Lāna i; (3) advertisements posted on the University of
Hawaii campus and in public settings in Honolulu; and (4)
targeted advertisements posted to social media websites. We
will work with Anthony Guerrero, the chair of the Department
of Psychiatry at the University of Hawaii, to ensure that the
recruitment strategies and advertisement of the research program
translate across cultures and to ensure effective recruitment as
well as diverse and representative data.

We will exclude participants younger than 30 years and older
than 70 years. We will require all potential participants to
remotely complete the Perceived Stress Scale (PSS), a 10-item
scale that is the most widely used psychological instrument for
measuring the perception of stress [14]. We will exclude
participants whose PSS score does not exceed 1 SD above the
mean for at least one of their demographic brackets (age, gender,
or race) as reported by Cohen et al [14]. We will also ask
participants to self-report their BP. We will also exclude
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participants who do not own a smartphone with continuous
network connectivity. During the in-person study intake, we
will measure the BP of potential study participants 3 times. We
will exclude participants whose BP does not exceed 130/80 mm
Hg for at least one of the measurements, as 130/80 mm Hg is
the minimum cutoff for stage 1 hypertension.

Data Collection and Storage
We will leverage the existing application programming interface
(API) provided by both Omron and Fitbit to record the user’s
wearable sensor readings and upload the data to the cloud.
Omron’s health care API offers access to time-stamped BP
readings as well as activity and sleep approximations. The Fitbit
API provides access to sensor readings of heart rate (HR),
gyroscope, accelerometer, breathing rate, blood oxygen levels
(SpO2), and skin temperature sensor readings. The data will be
managed on each participant’s smartphone devices through a
mobile app, implemented for both iOS (Apple Inc) and Android,
that we will develop. The study team will install the app on the
user’s smartphone and configure the Omron and Fitbit devices
during study onboarding. The smartphone app will periodically
trigger a notification reminding the participant to (1) measure
their BP with the Omron wearable, (2) sync the Omron and
Fitbit data to the app, and (3) connect to a network while the
study app is open to allow the data to be uploaded to a
centralized server.

We will store the curated data from each participant on a
centralized server hosted on Amazon Web Services (AWS).
Because Fitbit is owned by Google, participants' Fitbit data will
be uploaded directly to Google's cloud servers, which use the
same level of security as other Google products such as Gmail.
Access to each participant's Fitbit data on Google's cloud servers
is implemented through OAuth, which provides clients with
secure delegated access to server resources on behalf of a
resource owner (ie, the participants of this study). This
mechanism is used by companies such as Amazon
(Amazon.com, Inc), Google (Alphabet Inc), Facebook (Meta
Platforms, Inc), Microsoft Corporation, and X (X Corp) to
permit users to share information about their accounts with
third-party applications or websites. In this case, the “third
party” is the study team. The Fitbit data and BP readings will

be preprocessed on an Elastic Cloud Compute instance on AWS,
which is HIPAA (Health Insurance Portability and
Accountability Act)-compliant. The Elastic Cloud Compute
instance will store the data onto respective database tables using
DynamoDB (Amazon.com). Each table will have columns for
the child ID and the time-stamp. We will encrypt all server-side
data and require secret access keys for data access. DynamoDB
tables are automatically encrypted on the server side. To add
an additional layer of security, we will implement client-side
encryption on the mobile app, ensuring encrypted data
transmission over HTTPS connection to move BP data between
the devices and AWS. Data access will require a secret access
key provided by the AWS administrators to any data analysis
team. The data will not be accessible without this key. For
further security, we will anonymize all user data on the server
side by removing all protected health information from the
DynamoDB tables.

We intend to release the curated data (Figure 2) as a publicly
available data set for use in the evaluation of multimodal
time-series ML models. Such data sets exist for activity and
emotion recognition from wearable data, but the prediction of
BP from these measurements will be a challenging task that
other researchers can attempt with the release of our data set.
This will be the first publicly available data set that includes
at-home BP measurements alongside wearable sensors such as
HR, SpO2, and accelerometer readings. This fully anonymized
data set will only be released to researchers who sign a Data
Use Agreement, which will be approved by the University of
Hawaii Data Governance Office.

The app comprises 2 primary screens, account and home. The
account screen features user details, a star reward system for
active participation in the study, and options to link 2 wearable
devices (Fitbit and Omron Heartguide) for data synchronization
with our secure and encrypted database. The home screen is
divided into 6 sections, including questionnaires, messages,
feedback, records, BP readings, and app instructions.
Additionally, the CardioMate app includes an administrative
area for study managers to view participant statistics and initiate
personalized chats, complete with alarm and notification
functions.
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Figure 2. Workflow of the CardioMate app, comprising account and home screens with user details, study rewards, wearable device integration, and
an administrative section for study managers.

Feasibility
The most difficult aspect of this aim will be maintaining
participant engagement throughout the 4-week study period.
The graduate research assistant funded by this project will
dedicate some time each day toward running the study and
interfacing with participants. We expect participants to open
the smartphone app to sync and upload their data on a daily
basis, which is a 1-minute time commitment per day.

While we expect no trouble recruiting 40 subjects for
participants, we expect some participants to drop off during the
study. Since we will have enough devices for 5 concurrent
subjects, it will take 8 months to collect all data if no participants
drop off. Our study timeline allocates 6 additional months of
make-up time to collect data from new participants, accounting
for >50% drop-off rate. Given the remote nature of the data
collection procedures, we expect some participants to drop off
from the study prematurely or to not comply with the study

processes. We will therefore remotely monitor the upload
progress and send an automated text and email notification to
the participant if the data are not uploaded in a timely manner.
If 3 consecutive days of participant noncompliance are detected,
we will contact the participant for a device return.

Ethical Considerations
Under an expedited review procedure, this research project was
approved on April 26, 2023, by the University of Hawaii
Institutional Review Board (UHMUIF_2023-00130). The
application qualified for expedited review under CFR 46.110
and 21 CFR 56.110, categories 1b, 4a, 4d, and 6. The informed
consent process for this human subject research study involves
participants completing an interview session where they receive
comprehensive information about the research, including its
purpose, procedures, and potential risks and benefits.
Participants are assured of the voluntary nature of their
participation and their right to refuse or withdraw at any time
without penalty. For secondary analyses of research data, it is
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clarified that the original informed consent allows for such
analyses without additional consent, as approved by the
institutional review board. Privacy and confidentiality
protections are emphasized, with participant data anonymized
and stored securely on HIPAA-compliant servers. Compensation
for participation includes US $135 upon completion along with
an additional US $15 for certain eligibility interview tasks,
reflecting the time and effort required from participants while
respecting the ethical standards. The consent form ensures that
no identification of individual participants or users is possible
in any images or supplementary materials without explicit
consent, with researchers providing relevant consent forms or
written communications to uphold participant privacy and
consent.

AI Model Training
Self-supervised learning (SSL) is usually used to pretrain an
entire data set with no explicit labeling by humans to guide the
supervision task. We propose to redesign the SSL paradigm
toward the task of model personalization. By pretraining a model
only on the vast amounts of data curated from a single
individual, the weights of the neural network will learn to make
predictions using the inherent structure of each participant’s
biosignals. This is essential because the baseline HR, SpO2,
skin temperature, and movement patterns, regardless of stress,
will vary drastically across individuals, limiting the performance
of general-purpose ML models.

To train ML models that predict BP based on a user’s wearable
biometrics, we will develop and evaluate a series of both long
short-term memory and transformer neural networks. The inputs
to the models will consist of a separate 1D convolutional
backbone for each biometric modality. The convolutional
features will be fused upstream into a shared joint dense
representation space and finally a dense prediction layer with
linear activation for regression prediction. We will implement
all models using Tensorflow (Google Brain) [15].

We will perform a series of self-supervised pretraining tasks to
allow the networks to learn the baseline temporal dynamics of
each individual’s biosignals. As a pretraining task, we will
develop contrastive learning methods to automatically learn
embeddings that encode the structure of the signal. For each
wearable sensor modality, we will run a sliding window to
isolate short-time segments. We will apply signal-based data
augmentation techniques to derive a new signal. We will
perform contrastive learning to learn neural network embeddings
that maximize the similarity between each original segment and
its modified version while minimizing the similarity across
segments.

We will develop a modified version of the SimCLR (simple
framework for contrastive learning of visual representations)
algorithm, which will be tuned for the task of personalization
to a user’s wearable signal readings. It is often the case that
biosignals look highly similar, either due to temporal locality
or relative homogeneity of the individual’s activity. To account
for this possibility of recurring signal patterns, we will weigh
the attract and repel strength of SimCLR based on the temporal
distance between two segments of a particular signal. We will
run a grid search to tune this repel strength.

The data augmentation techniques that we apply to the signals
will be domain-specific, keeping in mind the inherent nature of
each sensor. For example, for accelerometer data, rotations
simulate different sensor placements and cropping is used to
diminish the dependency of event locations [16]. Across several
modalities, sensor noise can be simulated through scaling,
magnitude-warping, and jittering [16]. We will be careful to
not apply augmentation strategies that might change the meaning
of the underlying signal.

As another pretraining task, we will perform generative
pretraining by masking the input signal and predicting the
missing portion of the signal using a deep autoencoder
architecture. Pretraining in this manner will teach the model to
understand the dynamics of each time series signal independent
of BP or any other labels.

We will train the model on the first 60% of data (by time), tune
hyperparameters on the next 20% of data, and calculate the
mean absolute error and mean squared error on the final 20%.
This evaluation pattern mimics real-world use, where a model
will be calibrated by a user prior to real-world deployment. It
is important to emphasize that we will train and test a separate
personalized ML model for each individual.

We will evaluate the models by comparing the performance
with respect to the number of labeled examples used for
supervised fine-tuning. A plot of this comparison will elucidate
the number of BP measurements required for model calibration
to a single individual. We will plot the mean squared error at
10, 20, 30, 40, 50, 75, 100, 125, and 150 BP annotations, as
these are feasible amounts of labels that might be provided by
a user in real-world use. To ensure a robust evaluation, we will
bootstrap at least 20 random samples of BP annotation subsets
for each point on the x-axis and will report the mean and 90%
CI. Just as in the plain supervised learning condition, we will
create a separate plot for each study participant, as the ML
portion of this proposal is testing the personalization of ML
models rather than a general-purpose one-size-fits-all ML model
which is more typical in ML evaluations.

We will perform a similar style of analysis for other clinical
outcomes using publicly available data sets such as the Wearable
Stress and Affect Detection (WESAD) [17] data set, a
multimodal sensor data set for stress detection of nurses in a
hospital [18], and K-EmoCon, a multimodal sensor data set for
continuous emotion recognition in naturalistic conversations
[19]. Each of these data sets, as well as several other publicly
available data sets, contains several hours of multimodal
biosignal data that overlap with the signals that we propose to
collect, such as skin temperature, accelerometer streams, and
HR. These data sets also include time-stamped annotations of
end points that are likely to be correlated with BP, including
self-perceived stress.

In prior work by other researchers, SSL pretraining approaches
have repeatedly demonstrated improved performance over pure
supervised learning in a variety of contexts [20-23]. Our
preliminary data (see Results section) support that
self-supervised pretraining on data solely from each individual
results in improved models over purely supervised learning.
While unlikely given our preliminary data and prior SSL
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publications, it is possible that minimal performance gains will
be observed when applying the SSL strategies in a personalized
manner. In such cases, the negative result would be a noteworthy
finding due to prior successes of SSL.

Results

We have developed a smartphone app, CardioMate, that will
prompt participants to measure their BP and log their stress
(Figure 2). The app comprises 2 primary screens, account and
home. The account screen features user details, a star reward
system for active participation in the study, and options to link
2 wearable devices (Fitbit and Omron Heartguide) for data
synchronization with our secure, encrypted database. The home
screen is divided into 6 sections, including questionnaires,
messages, feedback, records, BP readings, and app instructions.
Additionally, the CardioMate app includes an administrative
area for study managers to view participant statistics and initiate
personalized chats, complete with alarm and notification
functions.

Data collection commenced on February 15, 2024. As of the
manuscript submission date of February 24, 2024, a total of 2
participants have been recruited. The data collection period for
each participant spans 28 days. Upon completion of the data
collection period for each participant, we will proceed with the
personalized machine learning model development to predict
stress-induced BP spikes in real time. We aim to recruit a total
of at least 45 participants and complete the relevant data
collection, data analysis, and personalized ML development for
each participant by the end of December 2024.

Our initial sets of published experiments have demonstrated
promise for personalized SSL of stress but with some caveats.
Our experiments on the WESAD data set demonstrated that
deep learning model performance improves drastically when
using self-supervised personalization when compared to
personalization without SSL when there are a small number of
labeled data points for supervision [24]. This effect diminishes
with increasing amounts of labeled data [25,26], aligning with
prior work that demonstrates that SSL is only beneficial under
low-label settings. We have also tried these methods on a
particularly challenging data set, a multimodal sensor data set
for stress detection of nurses in a hospital [18]. This data set
consists of wearable biosignals measured from nurses who wore
Empatica E4 wristbands while conducting their normal shifts.
This data set is difficult because (1) the data were collected in
the wild rather than in controlled laboratory settings and (2)
individual nurses were not consistent about their labeling
practices, leading to sparse, irregular, noisy, and otherwise
messy labels. Consequently, we found that the difference in
area under curve and the receiver operating characteristic curve
scores for self-supervised models was only about 2.5% higher
on average compared against an equivalent baseline model [27],
and this increase is within the margin of error due to the limited
sample size. This lack of improvement in noisy annotation
settings highlights the need for HCI innovations to improve
data labeling quality for personalized AI within naturalistic
settings.

We have also observed improved performance when
personalizing affect-related prediction tasks without
personalization both using classical ML [28] and deep learning
[29], as well as when only applying SSL without personalization
[30]. When disentangling and comparing the effects of SSL and
personalization separately, we find that SSL yields more benefit
than individualization on nonaffective medical data with large
time intervals between data points, suggesting that the sampling
frequency and other data considerations must be considered
[30]. Collectively, these preliminary results demonstrate promise
for the core ML approach that we propose.

Discussion

The primary objective of this study is to leverage ML algorithms
for real-time predictions of stress-induced BP spikes using
consumer wearable devices such as Fitbit, providing actionable
insights to both patients and clinicians to improve diagnostics
and enable proactive health monitoring. Our study is motivated
by recent research conducted at the John A Burns School of
Medicine, which found that Native Hawaiian and other Pacific
Islander individuals under a physician’s care for hypertension
experienced an average drop of 18.3 points in systolic BP after
participating in a 12-week hula program [2,3]. This study
provides strong evidence that stress-reducing interventions can
reduce hypertension in Native Hawaiian individuals. We hope
to build upon this foundational research by leveraging consumer
devices, such as Fitbit, to detect moments of high stress and
provide just-in-time interventions that are culturally grounded.
The first phase of this long-term research plan involves
developing the AI necessary to power the digital intervention,
which is the primary focus of this proposal.

The successful development of ML algorithms tailored to
individual participants signifies a significant advancement in
personalized health care interventions. By using longitudinal
data from Fitbit devices and corresponding stress level labels
from Ecological Momentary Assessment reports, the study will
be able to capture individual-specific patterns effectively,
enabling accurate predictions of stress-induced BP spikes. This
approach not only enhances the understanding of stress-related
hypertension but also provides opportunities for targeted
interventions and improved patient outcomes.

Furthermore, the findings of this study contribute to the growing
body of literature on the use of wearable devices and ML in
health care. The adoption of transformer models for personalized
prediction tasks, coupled with SSL techniques for pretraining,
represents a novel approach to leveraging advanced
computational techniques for real-time health monitoring. By
dynamically weighing the importance of different time steps
and focusing on relevant temporal features and dependencies,
transformer models offer a powerful tool for predicting complex
physiological responses such as stress-induced BP spikes. These
findings will add to the existing literature by highlighting the
potential of ML in improving the accuracy and efficiency of
health monitoring systems, particularly in the context of
personalized interventions for stress-related hypertension.

It is essential to acknowledge the limitations of this study design.
One limitation is the relatively small sample size, which may
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limit the generalizability of the findings. Additionally, the study
focuses primarily on predicting stress-induced BP spikes using
wearable device data streams and may not capture other factors
contributing to hypertension. Future research should aim to
address these limitations by including larger and more diverse
samples and exploring additional predictors of hypertension.

The findings of this study will demonstrate the feasibility and
potential benefits of leveraging ML algorithms for real-time
predictions of stress-induced BP spikes using consumer wearable
devices. By developing personalized AI models based on

individual biosignals, the study will provide valuable insights
into the monitoring and management of stress-related
hypertension. These findings will have broader implications for
personalized health care interventions and underscore the
importance of integrating advanced computational techniques
into health care systems to improve patient outcomes. Through
iterative refinement and optimization, we aim to develop a
personalized deep-learning framework capable of accurately
predicting stress-induced BP spikes, thereby promoting
individual well-being and health outcomes.
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