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Abstract

Background: Motor learning, a primary goal of pediatric rehabilitation, is facilitated when tasks are presented at a “just-right”
challenge level—at the edge of the child’s current abilities, yet attainable enough to motivate the child in persistent efforts for
success. Immersive virtual reality (VR) may be ideally suited for “just-right” task challenges because it enables precise adjustments
of task parameters in motivating environments. Rehabilitation-specific VR tasks often use dynamic difficulty algorithms based
on task performance to personalize task difficulty. However, these approaches do not consider relevant cognitive processes that
could also impact “just-right” challenges, such as attention and engagement. Objective physiological measurement of these
cognitive processes using wearable sensors could support their integration within “just-right” challenge detection and prediction
algorithms. As a first step, it is important to explore relationships between objectively and subjectively measured
psychophysiological states at progressively challenging task difficulty levels.

Objective: This study aims to (1) evaluate the performance of wearable sensors in a novel movement-based motor learning
immersive VR task; (2) evaluate changes in physiological data at 3 task difficulty levels; and (3) explore the relationship between
physiological data, task performance, and self-reported cognitive processes at each task difficulty level.

Methods: This study uses the within-participant experimental design. Typically developing children and youth aged 8-16 years
will be recruited to take part in a single 90-minute data collection session. Physiological sensors include electrodermal activity,
heart rate, electroencephalography, and eye-tracking. After collecting physiological data at rest, participants will play a seated
unimanual immersive VR task involving bouncing a virtual ball on a virtual racket. They will first play for 3 minutes at a predefined
medium level of difficulty to determine their baseline ability level and then at a personalized choice of 3 progressive difficulty
levels of 3 minutes each. Following each 3-minute session, participants will complete a short Likert-scale questionnaire evaluating
engagement, attention, cognitive workload, physical effort, self-efficacy, and motivation. Data loss and data quality will be
calculated for each sensor. Repeated-measures ANOVAs will evaluate changes in physiological response at each difficulty level.
Correlation analyses will determine individual relationships between task performance, physiological data, and self-reported data
at each difficulty level.

Results: Research ethics board approval has been obtained, and data collection is underway. Data collection was conducted on
December 12, 2023, and April 12, 2024, with a total of 15 typically developing children. Data analysis has been completed, and
results are expected to be published in the fall of 2024.

Conclusions: Wearable sensors may provide insights into the physiological effects of immersive VR task interaction at progressive
difficulty levels in children and youth. Understanding the relationship between physiological and self-reported cognitive processes
is a first step in better identifying and predicting “just-right” task challenges during immersive VR motor learning interventions.
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Introduction

Overview
Virtual reality (VR) systems enable users to interact with virtual
environments using body movements. Virtual environments
can be categorized as immersive or nonimmersive [1].
Immersive VR is viewed in a head-mounted display (HMD)
that provides a stereoscopic 3D viewing medium in which visual
display changes in a natural way with head movements [2].
User movements are tracked by handheld or body-worn sensors
to enable interaction with virtual objects. In contrast,
nonimmersive VR is viewed on a 2D flat-screen display. VR
incorporates evidence-based motor learning principles (such as
multisensory feedback and abundant repetitions) and engaging
immersive environments that may motivate children to adhere
to repeated practice [3-5]. The use of nonimmersive VR has
demonstrated effectiveness toward a variety of motor outcomes
in pediatric rehabilitation [6]. With recent advances in immersive
VR interaction abilities and the development of more lightweight
and lower-cost HMDs, the use of immersive VR has become
more attractive in pediatric rehabilitation, as complete visual
immersion may enhance presence [7,8]. Several studies have
established the feasibility of using immersive VR in pediatric
rehabilitation, and there is preliminary evidence for the
effectiveness of immersive VR interventions in promoting motor
learning outcomes in children with disabilities [5]. While more
information about the safety of long-term use in children
younger than 12 years of age is required, recommendations for
use with this age group include short periods of use punctuated
by frequent breaks [9]. While the integration of immersive VR
in clinical practice is in its early stages, a greater understanding
of the potential unique advantages of immersive VR as a
therapeutic intervention may support efforts at evidence-based
integration.

One potential benefit of immersive VR is its potential to achieve
a “just-right” task difficulty level during motor rehabilitation.
A “just-right” task challenge is [3]:

structured so children are required to persist with
and problem solve tasks in order to achieve success,
however, they are not so difficult that the child loses
interest, gives up, or fails the challenge

The “just-right” challenge is an important rehabilitation concept,
evident across different disciplines, populations, and functional
goals [10]. The concept of the “just-right” challenge is
associated with the “challenge point framework” developed by
Guadagnoli and Lee [11]. The authors theorize that an optimal
degree of functional task difficulty for an individual with a
specific level of skill will lead to optimal learning conditions,
with evidence demonstrating the effectiveness of practice at
this “challenge point” to improve motor learning [12]. Related

to this framework are efforts to examine psychological factors
that influence practice adherence, such as motivation [13].
Therapists working with children who require repeated,
long-term rehabilitation interventions may struggle to keep them
motivated to engage in the persistent efforts required to improve
skills beyond current ability levels [14]. Novel and engaging
virtual tasks and environments can help in that regard. In
addition, VR applications custom-developed specifically for
rehabilitation enable precise task difficulty selection, titrating
task parameters to meet individual children’s ability levels more
precisely than is possible in the real world. For these reasons,
immersive VR may provide an ideal practice modality to target
“just-right” challenges during motor skill learning. Currently,
therapists use objective task performance indicators and
subjective judgments of a child’s affective state when making
difficult decisions targeting “just-right” challenges. This makes
the presence of a therapist necessary to propose a “just-right”
challenge. Some VR applications use automatic dynamic
difficulty algorithms with performance-based decision rules to
adjust task difficulty based on performance, in a similar way to
the challenge point framework [15,16]. These algorithms are
useful in situations where the therapist is not present to
contribute clinical judgment, such as in telerehabilitation.
However, the therapist brings additional important judgments
outside of optimal task difficulty. Since the “just-right”
challenge depends not only on performance (ie, how successful
the learner is at accomplishing the task) but also on the learner’s
motivation to persist in their efforts to succeed, it makes sense
to consider how children’s cognitive processes can contribute
to a “just-right” challenge. For example, a task difficulty level
that is outside of a child’s abilities might be “just-right” for a
child who is motivated to succeed and who enjoys being
challenged, while a different child might be discouraged by
failure and require a difficulty level closer to their abilities.
Having an objective means of measuring proxies of these
cognitive processes could supplement performance results in
algorithms determining the “just-right” challenge in
telerehabilitation. Psychophysiology is defined as the scientific
study of the relationship between physiological and cognitive
processes [17]. Measuring psychophysiological state in real
time is possible with wearable sensors. Houzangbe et al [18]
present a novel method for quantifying the “just-right” challenge
in immersive VR based on psychophysiological data and
performance variables. The authors outline the potential
variables of interest and present hypothesized thresholds for the
“just-right” challenge. Wearable sensors are an active research
area in the pediatric population, mainly explored for measuring
activity level and movement for physical rehabilitation [19].
However, multiple barriers still limit their usage [20,21],
including difficulty with the placement of adult-sized sensors
and movement artifacts during intense activities. Very little
research has been done on the use of physiological sensor
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wearables (eg, heart rate [HR] and electroencephalography
[EEG]) with pediatric populations. Existing studies are
conducted in a static condition [22], or are missing details about
the potential impact of movement artifacts on data integrity
[23]. More evidence is required to understand potential data
loss and data quality issues in wearable sensors when children
undertake movement-based tasks [24]. The protocol described
in this paper for this pilot study is focused on the feasibility of
detecting variation in psychophysiological states in children
during a new motor learning task in immersive VR. As such, it
is centered around capturing objectively differing difficulty
levels rather than identifying a “just-right” challenge. The study
is the first step in a larger long-term research goal to train
machine learning models to identify “just-right” challenges
based on task performance and psychophysiological data.
Although the interest of this study is in the “just-right” challenge
during motor skill learning in children with motor impairments,
typically developing children are included in this pilot study to
capture a wider range of performance abilities in immersive
VR.

Objectives and Hypotheses

Objective 1
The objective is to evaluate the performance of (1) the
electrodermal activity (EDA) and HR sensor and (2) the EEG
13-lead sensor in children undertaking a new motor learning
task in immersive VR.

Hypothesis 1.1
Data loss will be less than 10%.

Hypothesis 1.2
A total of 70% of collected data will meet predetermined
thresholds for data quality.

Objective 2
The aim is to evaluate changes in physiological data at 3
immersive VR task difficulty levels.

Hypothesis 2
EDA number of peaks per minute, HR, level of engagement,
cognitive workload and concentration measured through EEG,
average time of eye pursuit of the interactable objects, and
average number of eye blinks per minute will differ between
difficulty levels.

Objective 3
The aim is to explore the relationship between physiological
data, task performance, and self-reported measures of
engagement, cognitive workload, physical effort, and attention
or focus at each task difficulty level.

Hypothesis 3.1
Self-report ratings will correlate positively with their
corresponding physiological data at each of the 3 difficulty
levels. Specifically, first, the EEG engagement index will
positively correlate with the self-reported engagement score.
Second, EEG cognitive workload will positively correlate with
the self-reported cognitive workload score. Third, EEG

concentration and average time of eye pursuit data will
positively correlate with the self-reported concentration score.
The average blink rate will negatively correlate with the
self-reported concentration score. Finally, physical activity
measured through acceleration data will positively correlate
with self-reported physical effort scores.

Hypothesis 3.2
Levels of arousal, measured through HR and EDA data, will
correlate negatively with task performance.

Methods

Ethical Considerations
This research project has been approved by the research ethics
board of the Sainte-Justine University Hospital Research Center
(2022-3881). We will send the informed consent form via email
to potential participants; signing will occur at the study session
after providing the opportunity to ask questions. The informed
consent document explains why participants are invited to
participate, the purpose of the project, the number of participants
involved, and the age range. Finally, there is an optional section
allowing participants to choose whether they agree to the
secondary usage of their data for future research and whether
their data will be made available.

Privacy and Confidentiality Protection
Participant data will be deidentified using codes, and only the
research team will have access to the code linking participants’
information to the collected data. On the informed consent form,
parents have the option to grant permission for the use of
deidentified images and videos of the participants for scientific
communication and training purposes.

Setting
Data collection will take place at the Technopôle for Pediatric
Rehabilitation of the Marie Enfant Children’s Readaptation
Center of the Sainte-Justine University Hospital Center in
Montréal, Canada.

Study Design
This study uses the repeated measure within-participant
experimental design.

Participants

Inclusion and Exclusion Criteria
A total of 15 typically developing children aged between 8 and
16 will be invited to participate. Inclusion criteria are cognitive,
visual, and auditory abilities necessary to follow instructions
and interact with the VR task. Exclusion criteria are
photosensitive seizures, visuospatial deficiencies, and known
cardiac problems. Interested participants will complete the
cybersickness susceptibility questionnaire’s non–time-sensitive
questions [25]. Since the experiment is performed seated, and
the virtual environment does not move independently of the
head movements, there is a limited risk of cybersickness.
Children displaying 4 or more (out of 18 total) indicators of
susceptibility to cybersickness (any “yes” answer in the yes-no
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questions and any rating of 1 in the Likert scales) will be
excluded from participation.

Recruitment
Typically developing children will be recruited through social
media advertisements. Participants and their parents will provide
assent and consent, respectively.

Sample Size Calculation
This pilot study is not powered for effectiveness. For the analysis
of repeated measure correlations, using the method developed
by Bakdash and Marusich [26], with a presumed strong effect
of task difficulty, 3 data points (the 3 different levels of
difficulty), 15 participants in total are sufficient to reach a power
of 0.80. This pilot study will determine the effect size to power
a subsequent larger data collection.

Novel Motor Learning Task in Immersive VR: Ball
Bounce
Ball bounce is a custom-developed unimanual task built in
Unity3D (Unity Technologies) that requires the player to
consecutively bounce a virtual ball on a virtual paddle. The task
takes place in a fantasy environment composed of floating
islands and castles. The VR controller is represented in the
virtual environment by a paddle (Figure 1). The user views a
ping-pong–sized ball hovering directly in front of them at their
eye level. When the user squeezes the controller trigger finger,
the countdown starts and the ball is dropped. When the paddle
enters in contact with the ball then the ball will bounce according
to regular physics reaction. If the ball hits the ground, it
disintegrates, and a new ball is generated and appears at eye
level of the player at its initial position. A trial is started when
a new ball is generated and starts falling. The trial ends when
the ball hits the floor, automatically triggering a new ball to
appear. Consecutive ball bounces during each trial are counted
in the scoreboard and the highest number of bounces is
displayed.

Figure 1. (A) The virtual environment. (B) The participant’s view.

Task difficulty is modulated through Unity’s physics engine
global gravity parameter. The ball is coded as a physical object
and gravity modulates its speed. There are 10 difficulty levels,
ranging from 10% of real-life gravity to 100% of real-life
gravity; each progressive difficulty level has a 10% step
increase. The virtual environment does not change across
difficulty levels. The impact of gravity manipulation on
perceived task difficulty was confirmed through preliminary
testing with 5 typically developing children.

Study Procedures

Overview
Figure 2 outlines the study protocol. After completing a study
demographic form, the participant is outfitted with the HMD
and the data collection devices.

Participants will be asked to sit still for 5 minutes to calculate
baseline resting state data. They will then receive task
instructions Participants play with their dominant hand. All
participants are asked to limit the movements of the nontask

hand. Participants will first complete a 1-minute tutorial to
familiarize them with the environment and the gameplay. The
tutorial is set at a minimal level of difficulty (gravity is set to
10% of its real value). When participants are ready, they can
click any button on the controller to start the game.

Participants will play for 3 minutes at the medium level of
difficulty (gravity set to 50%) to evaluate their baseline task
abilities. Depending on the participant’s performance during
this baseline session, the starting difficulty will be set at a very
easy level, an easy level, or a medium level. This personalization
optimizes task difficulty progression to participant abilities.
Visual representation of the difficulty selection and evolution
is detailed in Figure 3. Participants then complete three 3-minute
gameplay sessions at progressively challenging gravity
manipulation levels, with breaks in between sessions. This
number of gameplay sessions was chosen to limit the effects of
fatigue. We chose not to counterbalance task difficulty
presentation in order to better reflect real-world task learning
conditions in which instructors increase task difficulty
parameters as performance improves.
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Figure 2. Overview of the data collection protocol.

Figure 3. Difficulty selection and progression depending on baseline evaluation.
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After each 3-minute play session, the participant removes the
HMD and answers a study-specific questionnaire asking them
to rate agreement with 7 statements (1 statement per construct)
about their engagement, attention or focus, cognitive workload,
physical effort, self-efficacy, and motivation. Statements are
presented on a 7-item Likert scale with anchors on “strongly
disagree” and “strongly agree.” First, engagement—2 questions
inspired by the Independent Television Commission-Sense Of
Presence Inventory [27] whose scores are averaged as (1) I
enjoyed myself during this level and (2) I felt involved in the
displayed environment. Second, attention or focus—I am
completely focused on the task at hand (question derived from
the Flow Short Scale [28]). Third, cognitive workload—during
the task I did a lot of thinking and figuring out (questions
derived from the revised National Aeronautics and Space
Administration [NASA] Task Load Index [TLX] for children
[29]). Fourth, physical effort—during the task I had to do a lot
of physical effort (question derived from the revised NASA
TLX for children [29]). Fifth, self-efficacy—I think I can do
well at a more difficult level. Finally, motivation—I wanted to
work harder to improve my performance or I tried hard to
improve my performance (question derived from the Pediatric
Motivation Scale [30])

The resting period between each 3-minute play session is
between 3 and 5 minutes, and participants can request a longer
break as needed. At the end of the session, participants complete
the Child Simulator Sickness Questionnaire [31]. Participants
will receive a CAD $25 (US $1=CAD $1.37) gift card as a token
of appreciation for their participation in the study.

Data Collection Instruments

Task Performance

Participants will wear a Pico 4 Enterprise HMD. Performance
data are collected within the Unity task—for each trial, the
position of the paddle when the ball hits it and the maximum
elevation of the ball after each hit is captured. The number of
consecutive hits is calculated. To be considered as a valid
bounce the ball must reach a height of at least 15 cm. Task
performance is defined as the ratio of error over the total number
of bounces attempted (number of errors divided by [number of
bounces + number of errors]) during the 3-minute trial.

EEG Analysis

A Kaptics (Corporation) EEG with 12 Ag/AgCl dry electrodes
is integrated into the Pico4 headgear. The electrodes are placed
in the configuration—Fp1, Fp2, AFz (bias), F3, Fz, F4, C3, Cz
(reference), C4, O1, Oz, O2. The Kaptics custom-developed
application computes the psychophysiological metrics of (1)
mental engagement level, measured with the engagement index,
which is calculated through beta and alpha bands, based on the
work of Coelli et al [32]; (2) cognitive workload, which is
calculated through changes in theta and alpha bands, based on
the work of Di Flumeri et al [33] and Zammouri et al [34]; and
(3) concentration, which is measured through changes in beta
bands, based on the work of Lim et al [35].

Eye-Tracking

The Pico Neo 4 Enterprise has an integrated Tobii eye tracker.
Oculometry correlates with attention to a task [36]. The average

time per trial of eye pursuit of the ball will be used as a metric
of focused attention. Eye pursuit will be computed as the amount
of time when performing the VR task, during which the direction
of the eyes intersects with the areas of interest (volumes
englobing respectively the ball and the paddle). A lower blink
rate will be indicative of a higher focused attention [36].

Movement Quantity

The continuous position of the virtual paddle in the virtual
environment is saved at a frame rate of 60 Hz. From the
consecutive 3D positions recorded, the total amount of
displacement will be computed to get the total amount of motion
during the virtual task.

EDA and HR

Participants will wear an Empatica E4 sensor equipped with a
photoplethysmography sensor and an EDA sensor. EDA, a
recognized marker of arousal [37], will be computed as the
average number of peaks per minute for each 3-minute play
period using pyEDA, an open-source Python toolkit (Python
Software Foundation) [38]. HR is also a proxy for arousal [37].
HR in beats per minute will be averaged over each gameplay.
The changes in the level of arousal will be computed to
determine the intensity of the physiological response. With an
optimal level of engagement, arousal should be average [37].
If arousal is too high it can be interpreted as a sign of frustration
rather than engagement.

Upper Extremity Movement Quality

As an exploratory measure, participants will wear XSens DOT
inertial measurement units on the active forearm and on the
chest to capture upper limb movement smoothness. Movement
smoothness is measured through acceleration data. Less smooth
movements are characterized by fluctuations in velocity, causing
local maxima in the velocity profile. It is classified as an
acceleration metric since the calculation of this metric is in the
acceleration domain [39]. The lower the number of local maxima
recorded the smoother the movement is. The average number
of local maxima per minute will be computed as an exploratory
measure to look for differences in movement at the different
levels of difficulty.

Data Processing

Empatica data are stored in the smartwatch during the
experiment and then downloaded to a computer for analysis.
EDA data will be filtered using a low-pass Butterworth filter
(frequency of 1 Hz and order of 6). EEG signals processed by
Kaptics are filtered using a band-pass filter between 0.5 and 45
Hz and then zero-mean normalized. Kaptics uses the subspace
reconstruction method to remove motion artifacts [40].

Analyses

Overview
Quantitative statistical analyses will be performed using SPSS
(IBM Corp) for ANOVA, correlations and graphical output and
R (R Foundation for Statistical Computing) for the usage of the
repeated measure correlation (rmcorr) package [26]. Confidence
level will be set at 95%. Descriptive statistics will be presented
as counts, means, and standard differences by level of difficulty.
Demographic categorial data will be presented as means and
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standard differences by age, gender, and Gross Motor Function
Classification System level.

Objective 1
The aim is to evaluate the performance of the physiological
sensors in children undertaking a new motor learning task in
immersive VR.

Identify Data Loss

The acceptable data loss threshold per measure will be set as
10% of the total data collection time for each of the 3 gameplay
sessions. The expected output of data differs by sensor according
to frequency. The amount of recorded data, for each 3-minute
level, over expected output will be computed to measure the
percentage of data loss.

1. EDA: Empatica frequency is 4 Hz
2. HR: Empatica HR value frequency is 1 Hz
3. Eye-tracking: Data will be collected at a fixed frequency

(60 Hz). When the HMD is unable to accurately detect the
eyes of the participants, the values are reported as 0.

Data Quality

For each 3-minute level, the amount of aberrant data will be
computed for each sensor. The percentage of aberrant data over
the total amount of collected data will then be computed.

First, the quality of EDA data is assessed following the two
criteria of [41] (1) the total range of valid EDA data is 0.05-60
µS (data outside this range will be considered aberrant) and (2)
an EDA change of more than ±10 µS/s between any 2
consecutive values is considered aberrant.

Second, HR—the minimal valid value of HR data is 60 beats
per minute [42], while the estimated maximum valid value is
194 beats per minute [43]. Data outside this threshold will be
considered aberrant. Changes in HR between any 2 consecutive
values superior to ±3 beats per second will be considered
aberrant [44].

Objective 2
Evaluate changes in physiological data at 3 immersive VR task
difficulty levels. To examine intraindividual changes in averaged
physiological data at baseline and the 3 difficulty levels, a
repeated measure ANOVA will be performed for each dependent
variable, with the level of difficulty as the within-subject factor.
Sensitivity analysis will be done using the Friedman test, due
to the small sample size. Eta squared will be reported as the
measure of effect size.

Objective 3
The aim is to explore the relationship between physiological
data, task performance, and self-reported measures of
engagement, cognitive workload, physical effort, and attention
or focus at each task difficulty level.

To determine the intraindividual relationship between
physiological data and self-reported data, the Pearson
product-moment correlation, and the Spearman rank correlation
will be performed, to explore linear and monotonic relationships.
The complete correlation matrix will be reported (with
correlation coefficient as effect sizes and P values). At each

difficulty level, correlations will be explored between (1) the
level of engagement computed from the EEG data and the
averaged self-reported score of engagement, (2) the level of
attention computed from the EEG data and the self-reported
score of attention, (3) the level of attention computed from the
eye tracking data (time of pursuit and average blink rate) and
the self-reported score of attention, (4) the level of cognitive
workload computed from the EEG data and the self-reported
score of cognitive workload, and (5) the average amount of
movement of the virtual paddle and the self-reported score of
physical effort.

Testing to evaluate parallel slopes between conditions will be
undertaken [45]. If parallel slopes are identified, a repeated
measure correlation (rmcorr) will be performed [26]. The rmcorr
method can handle repeated measures data without violating
independence assumptions or averaging data. It is ideally suited
to assess association in intraindividual relationships between
paired measures. Visual analysis [46], as well as statistical
inference (regression coefficients and P values) will be reported.
We will report visual analyses, as well as statistical inference
(regression coefficients and P values) results.

Results

Study recruitment is underway. The Centre hospitalier
universitaire Sainte-Justine research ethics board approved this
work (2022-3881) in the spring of 2023. Data collection was
conducted on December 12, 2023, and April 12, 2024, with a
total of 15 typically developing children. Data analysis has been
completed, and results are expected to be published in the fall
of 2024.

Discussion

Principal Findings
Targeting “just-right” task challenges during rehabilitation
interventions is anchored in evidence-based motor learning
principles [3]. Wearable sensors can enable objective
measurement of psychophysiological states related to difficulty
progression during motor skill learning. A better understanding
of wearable sensor task performance during movement-based
tasks in children is required [24]. The current state of knowledge
on wearable sensor use in pediatric rehabilitation is limited to
inertial measurement units and accelerometers [19]. Very few
studies have explored the potential of wearable physiological
sensors to understand children’s engagement during VR-based
interactions [22]. This study will evaluate relationships between
physiological data and children’s self-reports during the practice
of a novel motor learning task in immersive VR at different task
difficulty levels. Findings from this pilot study will inform
subsequent work, which could include collecting physiological
and self-report data with a child with a motor impairment who
progresses at their own pace through task difficulty levels in
immersive VR and asking children to self-identify when they
perceive the challenge to be “just-right.” If objective and
subjective data are correlated, this training data could be used
to build a machine learning model to predict the “just-right”
challenge based on the combination of thresholds of different
variables, using the subjective self-report of the “just-right”
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challenge to correctly label the corresponding physiological
data. As proposed by Houzangbe et al [18], combining the
success rate of a task with psychophysiological levels of
engagement, arousal, cognitive workload, and attention could
lead to the objective identification of conditions necessary to
reach personalized “just-right” challenges. In the longer term,
embedding this model within immersive VR motor learning
tasks may enable real-time decision-making about task difficulty
level to achieve and maintain “just-right” task challenges.
Subsequent work can also compare different types of VR tasks
to assess the reproducibility of the results and their
generalization.

Potential Limitations
The small sample size of this pilot study limits the scope of the
conclusions. Results will inform the calculation of the effect
size required to power subsequent data collection. Using
commercial physiological wearable sensors may lead to more
compromised data quality as compared to medical-grade
equipment. This limitation is balanced by cost and accessibility

benefits. Choosing not to counterbalance task difficulty
presentation introduces potential learning or fatigue effects.
Using short house-made motivation and focus questionnaires
is required as longer validated questionnaires are impractical
following short gameplay sessions.

Conclusions
This is the first step in a program of research exploring factors
influencing children’s user experiences during motor skill
learning in immersive VR. Immersive VR hardware and
software are rapidly developing and lowering in cost, increasing
their potential as an accessible telerehabilitation modality. If
the difficulty of immersive VR tasks can be adapted to
“just-right” challenges in the absence of therapeutic
decision-making, they may be evidence-based, accessible, and
personalized telerehabilitation interventions. Being able to
identify, quantify, and predict “just-right” challenges can
contribute to a future of precision rehabilitation [19] where VR,
physiological sensors, and AI models can provide personalized
interventions in clinic and home-based contexts.
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