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Abstract

Background: Progressive difficulty in performing everyday functional activities is a key diagnostic feature of dementia
syndromes. However, not much is known about the neural signature of functional decline, particularly during the very early stages
of dementia. Early intervention before overt impairment is observed offers the best hope of reducing the burdens of Alzheimer
disease (AD) and other dementias. However, to justify early intervention, those at risk need to be detected earlier and more
accurately. The decline in complex daily function (CdF) such as managing medications has been reported to precede impairment
in basic activities of daily living (eg, eating and dressing).

Objective: Our goal is to establish the neural signature of decline in CdF during the preclinical dementia period.

Methods: Gait is central to many CdF and community-based activities. Hence, to elucidate the neural signature of CdF, we
validated a novel electroencephalographic approach to measuring gait-related brain activation while participants perform complex
gait-based functional tasks. We hypothesize that dementia-related pathology during the preclinical period activates a unique
gait-related electroencephalographic (grEEG) pattern that predicts a subsequent decline in CdF.

Results: We provide preliminary findings showing that older adults reporting CdF limitations can be characterized by a unique
gait-related neural signature: weaker sensorimotor and stronger motor control activation. This subsample also had smaller brain
volume and white matter hyperintensities in regions affected early by dementia and engaged in less physical exercise. We propose
a prospective observational cohort study in cognitively unimpaired older adults with and without subclinical AD (plasma amyloid-β)
and vascular (white matter hyperintensities) pathologies. We aim to (1) establish the unique grEEG activation as the neural
signature and predictor of decline in CdF during the preclinical dementia period; (2) determine associations between dementia-related
pathologies and incidence of the neural signature of CdF; and (3) establish associations between a dementia risk factor, physical
inactivity, and the neural signature of CdF.

Conclusions: By establishing the clinical relevance and biological basis of the neural signature of CdF decline, we aim to
improve prediction during the preclinical stages of ADs and other dementias. Our approach has important research and translational
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implications because grEEG protocols are relatively inexpensive and portable, and predicting CdF decline may have real-world
benefits.

International Registered Report Identifier (IRRID): DERR1-10.2196/56726

(JMIR Res Protoc 2024;13:e56726) doi: 10.2196/56726
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Introduction

Background
Progressive difficulty in performing everyday functional
activities is a key diagnostic feature of dementia. Yet not much
is known about the neural underpinnings of functional decline,
particularly during the very early stages of dementia. Early
intervention before impairment in everyday functions is
observed offers the best hope of reducing the burdens of
Alzheimer disease (AD) and other dementias. However, to
justify early intervention, those at risk need to be detected earlier
and more accurately.

The decline in complex daily function (CdF) such as managing
medications and finances has been reported to precede
impairment in basic activities of daily living (eg, eating and
dressing). Our goal is to establish the neural signature of decline
in CdF during the preclinical dementia period. We recently
reported that limitations in CdF were more prevalent or declined
faster in those who converted to mild cognitive impairment
(MCI) [1]. We compared CdF profiles at baseline in 59
community-dwelling older individuals with normal cognitive
performance who went on to develop incident MCI (“pre-MCI”)
with 284 older individuals who remained cognitively normal
over follow-up. While limitations in CdF were reported to be
subtle, the mean number of limitations at baseline was 3.1 (SD
3.0) in the pre-MCI cases and 2.0 (SD 2.4) in normal controls
(P=.003). This is in line with studies using amyloid-β (Aβ),
phosphorylated τ, neurofilament (also referred to as AT(N)
classification system) [2] to stratify dementia risk in cognitively
normal older adults, showing the presence of AT(N) biomarkers
to be associated with more limitations in CdF [3,4].

While combining behavioral (eg, cognition and CdF assessment)
with biological (eg, AT(N)) markers has further improved early
risk assessment, it is insufficient to justify intervention during
the preclinical dementia stages. For example, up to one-third
of older individuals with significant accumulation of AD-related
and vascular pathology will not progress to MCI and dementia
stages [5,6]. In this proposal, we seek to further improve risk
assessment by establishing the neural signature of CdF. We
posit that abnormal patterns of neurophysiological activation
precedes and can serve as a robust predictor of change in CdF,
which in turn increases the risk of conversion to dementia [7].
To test this hypothesis, we designed complex gait tasks. Gait
has physical and cognitive contributions. We showed that gait
performance (eg, gait speed) during normal and dual-task
conditions is associated with scores on the Activities of Daily
Living–Prevention Instrument (ADL-PI) [8], which includes
questions about abilities to manage money, drive, do the laundry,

and use appliances [9,10]. We applied a novel
electroencephalographic-based mobile brain-body imaging
approach to measure gait-related brain activation while
participants perform complex gait-based functional tasks
[11-19]. Raising the complexity of the gait task may allow early
distinction of individuals with and without the risk of developing
limitations in CdF by increasing the cognitive demands of the
task. We designed simple (walking-only) and complex (dual-task
walking) gait-based tasks to measure differential activation
(complex minus simple gait). This proposal builds on and
extends 2 decades of work by our team showing that changes
in gait (eg, slowing of walking speed) during simple and
complex walking conditions are robust predictors of decline in
CdF, cognitive decline, and progression to dementia
[9,10,20-30].

Hypothesis
Our overarching hypothesis illustrated in Figure 1 is that the
presence of dementia-related pathology during the preclinical
period of dementia is associated with a unique gait-related
electroencephalographic (grEEG) pattern that predicts a
subsequent decline in CdF. The first aim of this study is to
establish the neural signature of CdF. Our preliminary findings
show that individuals reporting CdF limitations can be
characterized by weaker pre as well as postcentral gyrus and
stronger fronto-medial activation during complex gait (eg,
dual-task walking). This unique grEEG activation pattern (neural
signature) will predict CdF decline longitudinally. Our second
aim is to determine the association of dementia-related
pathology with the incidence of the neural signature of CdF in
individuals without the neural signature at baseline. Specifically,
we hypothesize that plasma-based assays of Aβ, T, and white
matter hyperintensities (WMH) at baseline will independently
and in combination predict the incidence of the neural signature
of CdF. We also need to understand if and how behaviors are
known to increase dementia risk (eg, physical inactivity) and
may modify the neural signature of CdF as a prelude to
developing interventions. Our third aim is to determine whether
physical inactivity is associated with the prevalence and
incidence of the neural signature of CdF in our sample.

This project is part of a larger effort at the Division of Cognitive
and Motor Aging at Albert Einstein College of Medicine
(AECOM) to go beyond memory-centered depictions of AD
and consider cognitive processes related to motor and sensory
abilities as important additional characterization of AD and
related dementias. We are partnered with an ongoing
investigation (R01AG075679-01) that seeks to establish
visual-somatosensory integration (VSI study) as a novel marker
of preclinical AD. With Aβ accumulation occurring early in
sensory association areas [31], the VSI study (principal
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investigator [PI] JRM) seeks to define multisensory integration
as a preclinical marker of AD and related dementias (see [32]
for more details). The VSI study serves as a parent study for
cross-enrollment and includes older adults across the cognitive
spectrum from cognitively normal to MCI. Participants in the

VSI study with confirmed preclinical AD diagnosis (defined as
Aβ positive) will undergo positron emission tomography testing.
Collectively, these studies will broaden the scope of our
investigations in synergistic ways to deepen our understanding
of the very early preclinical dementia period.

Figure 1. Sequence of events leading to decline in CdF. CdF: complex daily function; Cog.: cognitive; MCI: mild cognitive impairment; Unimp.:
unimpaired.

Methods

Study Design and Recruitment
We propose a prospective observational cohort study of 180
older adults who are cognitively unimpaired. Figure 2 shows
the recruitment and timeline of procedures. We will cross-enroll
participants from an active study (R01AG075679, PI JRM).
We will use telephone-based screening procedures to enroll and
follow a community-based cohort. Potential participants aged
65 year and older from the greater New York City area are first

contacted by mail and then by telephone to explain the purpose
and nature of this study. The telephone interview includes verbal
consent, a brief medical history questionnaire, and 2 brief
cognitive screens [33,34]. We will ensure that enrollment
reflects the race and ethnic diversity of our catchment area.
Following the interview, potential participants are invited for
further evaluation at our research center. If eligible, written
informed consents are obtained at study visits as per institutional
review board (IRB) guidelines. This study is approved by the
AECOM IRB.
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Figure 2. Recruitment and procedures conducted under this proposal. Aβ: amyloid beta; CdF: complex daily function; CU: cognitively unimpaired;
fun.: function; max.: maximum; MoCA: Montreal Cognitive Assessment; MRI: magnetic resonance imaging; T: phosphorylated τ; WMH: white matter
hyperintensities.

Study Criteria

Inclusion Criteria
Adults are included who are aged 65 years and older, can speak
and write in English, reside in the New York metropolitan area,
plan to be in the area for the next 3 or more years, and are
ambulatory.

Exclusion Criteria
Exclusion criteria were previous MCI or dementia diagnosis,
reported severe sensory impairments, chronic medication use
(eg, neuroleptics) that influence cognitive functioning, terminal
illness with life expectancy <12 months, existing diagnosis of
neurodegenerative diseases (eg, Parkinson disease or
amyotrophic lateral sclerosis), presence of clinical disorders
that overtly alter attention like delirium, or major psychiatric

disorder such as schizophrenia. Additional
electroencephalographic and magnetic resonance imaging
(MRI)–specific exclusion criteria are seizure medication, stroke,
traumatic brain injury, claustrophobia, and MRI
contraindications such as pacemakers or any permanent
magnetic metal implants.

Assessments
Table 1 lists instruments used to assess function and other
domains. The ADL-PI will serve as our primary outcome
measure. It is a 15-item questionnaire that was developed to
target the earliest changes in complex daily activities [8]. A
performance-based instrument, the Everyday Problems Test
[35], will serve as our secondary CdF outcome measure. It is a
42-item paper-pencil test that examines abilities to understand
and execute complex daily activities (eg, write a check).
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Table 1. Measurements conducted under this proposal.

TimeDomain and measures

Independent variables

2.5 h including restAim 1: neural signature of CdFa (mobile electroencephalographic)

1 hAim 2: MRIb white matter hyperintensity and plasma-based Aβ42c/Aβ40/τ

5 min and 7-d periodAim 3: Physical Activity Scale for the Elderly [36] and accelerometry

Outcomes (yearly assessed)

5 minAim 1: Activities of Daily Living–Prevention Instrument [8]—primary

45 minAim 1: Everyday Problem Test—secondary

2.5 h including restAims 2 and 3: Incident neural signature of CdF

Covariates

55 minMontreal Cognitive Assessment [37] (moderator aim 1) Wechsler Adults Intelligence Scale IV
[38]

Cognition (modera-
tor)

15 minQuantitative Gait Assessment (ProtoKinetics Movement Analysis Software) [39-41], hand grip
strength [42]

Physical function

15 minGeriatric Depression Scale [43]; Beck Anxiety Inventory [44]Psychosocial

30 minApoE, obesity, diet [45], social isolation [46], cognitive engagement [47], depressionDementia risk fac-
tors

20 minMedical history, comorbidities, or medication [30,48]Medical

15 minVisual sensory screen [49], Shoebox auditory testing, Vibratron [50], Michigan Neuropathy
Screening Instrument [51,52]

Sensory

aCdF: complex daily function.
bMRI: magnetic resonance imaging.
cAβ: amyloid-β.

Neuroimaging and plasma-based blood testing will be conducted
during baseline visits for each participant. C2N Diagnostic will
quantify plasma τ217 (nonphosphorylated and phosphorylated)
and plasma amyloid (Aβ42, Aβ40), and provide plasma ApoE
prototyping using liquid chromatography-tandem mass
spectrometry platforms (PrecivityAD) [53-55]. Blood samples
will be collected and stored in the biorepository at AECOM.
Physical activity will be assessed at baseline and during annual
in-person visits using the Physical Activity Scale for the Elderly
[36] as well as objectively using accelerometry [56] over 7 days
(AX3; Axivity Ltd). The Physical Activity Scale for the Elderly
[57,58] and AX3 [59] are reliable and valid measures of physical
activity.

Cognitive Diagnoses
Established clinical consensus case conference procedures [60],
where participants’ demographic, neuropsychological,
neurological, psychosocial, and functional test results are
reviewed by a multidisciplinary clinical team consisting of
neurologists and neuropsychologists, will be used to determine
normal cognitive status. Cognitively unimpaired individuals
testing positive for Aβ are classified as preclinical AD [2].
Cognitive status—normal, MCI, and dementia—will be assigned
at baseline and during yearly follow-up visits. Individuals with
MCI and dementia at baseline are excluded from this project.

Outcomes
For aim 1, the primary outcome is complex daily functional
limitations measured with the ADL–PI, as reported in our
previous publication [8]. For aims 2 and 3, the outcome is the
incidence of the neural signature of CdF (see section below for
definition). All outcome measures are assessed annually over
a maximal period of 4 years.

Ethical Considerations
Protocols for the proposed research project are approved by the
AECOM’s IRB (2023-14773). Before enrollment, written
consent is obtained from all interested persons who meet the
inclusion criteria at the time of the visit. Confidentiality will be
preserved by the use of unique ID codes for identification. ID
and name associations will be password-protected in an
encrypted master file to which only the PI and study coordinator
have access. Participant data, including computer data disks,
will be kept in a locked room. Participants will receive monetary
compensation (US $20 per hour), free lunch, and transportation
for participating in this study.

grEEG Protocol
We designed simple (walking-only) and complex (dual-task
walking) gait tasks to measure differential activation (complex
minus simple gait). We provide preliminary findings showing
that individuals reporting CdF limitations can be characterized
by a unique grEEG pattern: weaker sensorimotor activation,
measured by pre or postcentral gyrus 13-28 Hz
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desynchronization, and stronger motor control activation,
measured by fronto-medial 3-7 Hz synchronization. Figure 3
shows an individual performing the visual-perturbed walking
task. The participant walking on a treadmill wearing an
electroencephalographic cap is immersed into a large-scale

visual flow field designed to destabilize posture [61]. We
superimpose sideway shifts onto a display of dots radiating
outward from a central point of extension to create visual
perturbations. We validated the task in prior studies [12,15].
Participants wore harnesses for safety.

Figure 3. Participant during the visually perturbed walking task.

Neural Signatures—Starting With Cognition and
Switching to CdF
In our first attempt to identify the neural signature of CdF, we
stratified individuals by their cognitive performance [19].
Cognitively normal individuals (Montreal Cognitive Assessment
[MoCA] ≥ 22 [62,63]) were dichotomized into low (score of
22-26; n=10) and high (score 27+; n=16) performing groups.
We discovered a unique grEEG activation pattern time-locked
to the gait cycle in low-cognitive performers: weaker central
gyrus β (13-28 Hz) desynchronization paired with stronger
fronto-medial θ (3-7 Hz) synchronization during visually
perturbed compared to unperturbed walking. We also found
correlations between θ synchronization and worse MoCA scores
and between β desynchronization and better MoCA scores.
Amplitude suppression (ie, desynchronization) of brain
oscillatory activity within 8 to 28 Hz over pre as well as
postcentral gyrus during movement is considered a
neurophysiological marker of sensorimotor activation related
to preparation and execution of movement [64-70]. We suggest
that posterior parietal and sensorimotor activation during gait

adjustment is related to prioritizing inputs from visual,
somatosensory, and vestibular systems based on reliability to
build accurate proprioception subserving motor output [19]. On
the other hand, increased θ activity (ie, synchronization) over
the fronto-medial cortex is thought of as a mechanism by which
the need for cognitive or motor control is realized and signaled
across brain regions [71,72]. In the context of movement, we
and others observed fronto-medial θ in moments of postural
instability [12,15,73-78].

Neural Signature of CdF
To test whether this unique grEEG activation pattern also
associates with the limitation in CdF, we dichotomized our
sample in the following way: (1) compute the difference in
activation between unperturbed and perturbed walking; (2) use
inverse source localization techniques to estimate intracranial
sources of scalp-recorded activity; (3) separate individuals with
source localized to fronto-medial regions into groups of weak
and strong θ synchronizers using the median; (4) separate
individuals without sources in fronto-medial and with sources
in sensorimotor region into groups of weak and strong β
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desynchronizers using the median (we chose right sensorimotor
β because effects where strongest for that region and frequency:
P=.04) [19].

Figure 4 shows preliminary findings in support of our
hypothesis: Individuals characterized by a unique grEEG pattern
report limitations in CdF to a higher degree.

Figure 4. The neural signature of limitations in CdF and unique gait-related electroencephalographic activation. CdF: complex daily function; med.:
medial; pert.: perturbed; PP: posterior parietal; SM: sensorimotor; unpert.: unperturbed; V.: visually.

Results

Aim 1—Establish the Neural Signature of CdF

Overview
Figure 4 shows individuals with and without the unique grEEG
pattern and associations with mild complex daily functional

limitations measured with ADL-PI [8,79]. A score of 100% in
Figure 5 indicates all activities are performed without
difficulties. In both walking tasks, individuals with the unique
grEEG pattern expressed nominally more difficulties performing
complex daily activities.
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Figure 5. Analysis pipeline for separating brain activity from non–brain related artifacts during MoBI recording. ERSP: event-related spectral perturbation;
IC: independent components; ICA: independent component analysis; LH: left heel strike; LTO: left toe off; MoBI: mobile brain body imaging; RH:
right heel strike; RTO: right toe off.

Walking Tasks
Participants will familiarize themselves with walking on the
treadmill and are asked to determine their preferred walking
speed before starting the experiment. For the VPW, participants
will perform 4 visual perturbed and 4 unperturbed walking
blocks randomized within participants. During perturbed
stimulation, a large-scale visual field of dots is projected
centrally onto a black wall in front of the participant. The
stimulation consisted of 200 randomly placed white dots
emanating outward from a central area of expansion.
Superimposed to the outward motion is a sinusoidal perturbation
in the mediolateral direction. A static image of dots placed
randomly across the visual field serves as a control condition
(ie, unperturbed walking). For the DTW, participants will
perform the Go/No-Go task standing (4 blocks) and walking (4
blocks). Blocks are randomized within participants. The
Go/No-Go stimuli consist of images from the International
Affective Picture System [80]. Participants were instructed to
click a wireless computer mouse button with the right hand each
time a new image appeared (Go trials) but to withhold their
response if the same image was shown twice in a row (No-Go
trials). Each block consists of 180 trials and the probability of
Go and No-Go trials will be 0.85 and 0.15, respectively. They
will also walk wearing a safety harness.

Kinematics Recordings
The Optitrack infrared motion capture system with 9 cameras
is used to collect kinematic data in the X/Y/Z direction at a
sample frequency of 100 Hz (Arena version 1.5 acquisition
software, Natural Point).

Electrophysiological Recordings
Continuous electroencephalography is recorded with a
64-channel BioSemi ActiveTwo system (digitized at 512 Hz;
0.05 to 100 Hz passband, 24 dB/octave). Data are high-pass
filtered at 2 Hz and an automatic channel rejection procedure
[81] is applied to exclude noise channels followed by visual
inspection. Time-synchronized acquisition of
electroencephalographic and motion tracking is conducted with
Lab Streaming Layer software (Swartz Center for Computational
Neuroscience, University of California San Diego).

Prevalence of Unique grEEG Activation
To estimate the prevalence of grEEG abnormalities in aging,
we reanalyzed previously published data [16]. Using
event-related potentials measured in control participants (ie,
young adults), we defined a threshold (1.5 SD from the mean
2.2 µV) to calculate the percentage of unique grEEG
(event-related potential, ERPyoung>1.5 SD, mean 2.2 µV) in
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older participants. The prevalence of grEEG abnormality in
older adults was 25% (4 out of 16).

Data Analysis

Gait Kinematics

Spatiotemporal features of gait kinematics are determined by
computing the velocity profile for each foot (for a detailed
description, see De Sanctis et al [19]).

Integrated Gait-Electroencephalographic Analysis

Figure 5 shows the basic steps to identify or correct artifacts
and model spatially resolved brain dynamics tied to the gait
cycle that we apply in our proposal. We have validated and
applied this analysis pipeline in prior work [12,15,61].
Independent component (IC) analysis will be used to parse
electroencephalographic signals into ICs. The resulting ICs are
source-localized using inverse source modeling [82,83]. Only
dipoles located within the brain, with a fit accounting for at
least 80% of the variance for a given IC scalp projection, are
retained [84,85]. Cortical IC clustering will be used to cluster
brain ICs across subjects using feature vectors coding for IC
differences in power spectral density, dipole location, and scalp
projection [86,87]. Event-related spectral perturbations (ERSPs)
are computed from single trial spectrograms for each IC,
time-locked to the right heel strike [88]. ERSPs are computed
by determining the power spectra over a sliding latency window
and normalizing the spectrogram by their respective mean
spectra (averaged across the latency window) [88]. To average
across all strides taken and compute gait cycle ERSPs, we
time-warped single trial spectrograms applying a linear
interpolation function to align left toe off, left heel strike, right
toe off, and right heel strike across epochs following the methods
introduced by Gwin and colleagues [87].

Statistical Plan Aim 1

Primary Analyses

grEEG measures will be compared between individuals with
and without limitations in CdF using the 2-sample t tests to

assess which grEEG measure is associated with limitations in
CdF. Pearson correlation will be computed between grEEG
measures and CdF scores.

Longitudinal Analyses

The time-to-event analyses including Kaplan-Meier survival
curves, log-rank tests, and Cox proportional hazards regression
models will be used to assess whether unique grEEG patterns
predict a decline in CdF longitudinally.

Power Analysis

With the sample size of 180 older adults who are cognitively
unimpaired, we estimate that there will be 54 individuals
classified with CdF limitations based on our preliminary studies.
With a significance level (α) of .05, using a 2-sided 2-sample t
test, this study achieves 80% power to detect a minimal
difference of 0.5 SD in the grEEG measure between CdF
limitation groups. The minimum detectable hazards ratio for
CdF decline between older adults with and without unique
grEEG pattern ranges from 1.52 to 1.69 (assuming event rate
between 0.30 and 0.48) with a power of 0.8 and a 2-sided type
I error rate of 5% [89].

Aim 2—Determine Association of Dementia-Related
Pathology With Incidence of Neural Signature of CdF

Overview
Figure 6 shows preliminary findings in support of our hypothesis
that Aβ burden [90] as well as MRI-regions impacted early
during AD and cerebrovascular pathology are nominally
associated with the presence of unique grEEG activation. Figure
6 shows the volume and white matter differences in brain
regions between participants with and without unique grEEG
patterns during DTW (15/28). Further, when grouping
participants in tertiles based on amyloid probability score (APS)
[90]—APS accounts for Aβ 42/40 ratio, age, and ApoE
phenotype - we find that high APS is nominally associated with
the increased presence of unique grEEG activation (1st tertile:
1 out of 5; 2nd tertile: 3 out of 6; 3rd tertile: 3 out of 5).
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Figure 6. Individuals with unique grEEG pattern have smaller cuneus, lingual, ant. cingulate, and increased white matter burden of the fimbra, which
connects the hippocampus. Act.: activity; ant.: anterior; Anteri.: anterior; grEEG: gait-related electroencephalographic; MRI: magnetic resonance
imaging; WMH: white matter hyperintensities.

MRI Image Acquisition
All images will be acquired at the Gruss Magnetic Resonance
Research Center at Einstein, using a Philips 3T Elition
multinuclear MRI/magnetic resonance spectroscopy system.
Our noninvasive MRI imaging procedures are reliable and
extensively used in aging and dementia studies. T1-weighted
images will be acquired using axial 3D-magnetization-prepared
rapid acquisition with gradient echo parameters over a 240 mm
field of view; 1.0 mm isotropic resolution, echo time/repetition
time=4.6/9.9 ms, α= 8o, and SENSE factor 2.6. 3D-FLAIR
images will be acquired with repetition time/inversion
time=4800/1650 ms, echo time=335 ms, 240 × 238 acquisition
matrix, and 0.46 mm voxel size. Functional (resting-state and
task-based), diffusion-weighted, arterial spin labeling, and
susceptibility-weighted images will also be acquired as part of
the parent study (for additional details see [32]). A radiologist
will review each MRI scan and confirm that there are no
clinically significant findings for any of the participants. WMH
will be quantified from 3D-FLAIR using the lesion segmentation
toolbox [91] (implemented with SPM12/MatLab). T1-weighted
images will be reconstructed using FreeSurfer (version 7.2;
FreeSurfer). FreeSurfer’s subcortical segmentation and cortical
parcellation are comparable to manual labeling [92]. Parcellation
of the T1-weighted data into anatomical brain regions is
important for examining cortical thickness and volume
associated with the grEEG pattern during visually perturbed
walking or dual-task walking. Gray matter volumes and cortical
thicknesses of 68 cortical regions will be extracted from this
pipeline and entered into subsequent statistical models.

Statistical Plan Aim 2

Primary Analyses

The time-to-event analyses will be used to assess whether Aβ
and WMH predict the incidence of the neural signature of CdF.
Prevalent cases—that is, older adults with the unique grEEG
pattern at baseline—will be excluded. Time to the neural
signature will be defined as the time interval between baseline
and the date when the participant demonstrates the unique
grEEG pattern during the longitudinal follow-up.

Power Analysis

Preclinical Aβ/WMH prevalence is estimated at 24% to 45%
among older adults who are cognitively unimpaired [93-95].
With a baseline sample size of 180 and a conservative attrition
rate of 20%, the minimum detectable hazards ratio for incident
neural signature of CdF between older adults with and without
dementia-related pathology is 1.75 (assuming an event rate of
0.25) with a statistical power of 80% and a 2-sided type I error
rate of 5%.

Aim 3: Establish Associations Between Physical
Inactivity and Neural Signature of CdF

Overview
Figure 7 shows preliminary findings in support of our prediction
that less exercise (assessed with the Late Life Function and
Disability Instrument [96,97]) is nominally associated with
13-28 Hz less desynchronization during DTW.
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Figure 7. Less exercise is related to less β desynchronization during DTW. DTW: dual-task walking; W: walking.

Statistical Plan Aim 3

Overview

The time-to-event analysis will be used to assess whether
physical activity at baseline predicts the presence of the neural
signature of CdF longitudinally.

Power Analysis

The minimum detectable hazards ratio for incident neural
signature of CdF between older adults with less physical activity
and normal level physical activity is 1.78 (assuming an event
rate of 0.25) with a power of 0.8 and a 2-sided type I error rate
of 5%.

Discussion

Principal Findings
A major effort aimed at curbing the rapid rise of dementia
revolves around early intervention. To substantiate early
intervention, it is crucial to enhance the accuracy of early
detection. We focus on the neural signature of early limitations
in CdF to improve detection. Walking is central to many
instrumental and complex activities [9,10]. To determine the
neural signature of CdF, our team [11-19] and others
[73,87,98-104] have established the validity and reliability of
neurophysiological recordings while participants are in motion.
We designed novel grEEG protocols for this proposal and
selected walking as an activity that, compared to other daily
activities (eg, preparing a meal), allows for the use of
standardized, reproducible, reliable, and well-tolerated study
protocols across participants [30,39,105,106].

Our preliminary findings in 28 older adults without
MCI/dementia show that reporting of CdF limitations is

associated with a unique grEEG activation pattern: 13-28 Hz
central gyrus desynchronization paired with 3-7 Hz
fronto-medial synchronization. We term this
electroencephalographic activation pattern the neural signature
of CdF. This subsample also had higher Aβ burden, smaller
brain volume, and WMH in regions affected early by dementia
and engaged in less physical exercise.

Some limitations are important to note. The ceiling effect with
a majority reporting no limitations in CdF is a concern (eg, in
Marshall et al [79] study only 16% reported limitations).
However, in our study, 30% of individuals reported limitations
[1]. To optimize detection, we choose 2 validated and reliable
instruments (self-report [107] and paper-pencil test [35] with
numerous dependent variables such as self-assessment,
time-to-complete, and number and type of errors to quantify
performance) covering a broad range of complex daily activities.
Further, different processes denoted by Aβ deposition and WMH
and their respective roles in the etiology of AD and other
dementias are matters of ongoing debates. The prevalence of
amyloid deposition in normal aging warrants consideration of
Aβ in concert with phosphorylated τ and neurofilament light
assays to recognize the multitude and temporal order of
pathological processes leading up to clinical signs.

In summary, establishing a noninvasive neurophysiological
signature of prevalence and incidence of CdF decline will refine
pre-MCI stage characterization. As our recent study shows [1],
both individuals who progress and do not progress to MCI may
report mild limitations in CdF during the preclinical period,
though more limitations are reported in the individuals who go
on to develop MCI. By establishing the clinical relevance and
biological basis of the neural signature of CdF decline, we aim
to improve prediction during preclinical stages of ADs and other
dementias.
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