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Abstract

Background: It is projected that drug-resistant infections will lead to 10 million deaths annually by 2050 if left unabated.
Despite this threat, surveillance data from resource-limited settings are scarce and often lack antimicrobial resistance (AMR)–related
clinical outcomes and economic burden. We aim to build an AMR and antimicrobial use (AMU) data warehouse, describe the
trends of resistance and antibiotic use, determine the economic burden of AMR in Uganda, and develop a machine learning
algorithm to predict AMR-related clinical outcomes.

Objective: The overall objective of the study is to use data-driven approaches to optimize antibiotic use and combat
antimicrobial-resistant infections in Uganda. We aim to (1) build a dynamic AMR and antimicrobial use and consumption (AMUC)
data warehouse to support research in AMR and AMUC to inform AMR-related interventions and public health policy, (2)
evaluate the trends in AMR and antibiotic use based on annual antibiotic and point prevalence survey data collected at 9 regional
referral hospitals over a 5-year period, (3) develop a machine learning model to predict the clinical outcomes of patients with
bacterial infectious syndromes due to drug-resistant pathogens, and (4) estimate the annual economic burden of AMR in Uganda
using the cost-of-illness approach.

Methods: We will conduct a study involving data curation, machine learning–based modeling, and cost-of-illness analysis using
AMR and AMU data abstracted from procurement, human resources, and clinical records of patients with bacterial infectious
syndromes at 9 regional referral hospitals in Uganda collected between 2018 and 2026. We will use data curation procedures,
FLAIR (Findable, Linkable, Accessible, Interactable and Repeatable) principles, and role-based access control to build a robust
and dynamic AMR and AMU data warehouse. We will also apply machine learning algorithms to model AMR-related clinical
outcomes, advanced statistical analysis to study AMR and AMU trends, and cost-of-illness analysis to determine the AMR-related
economic burden.
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Results: The study received funding from the Wellcome Trust through the Centers for Antimicrobial Optimisation Network
(CAMO-Net) in April 2023. As of October 28, 2024, we completed data warehouse development, which is now under testing;
completed data curation of the historical Fleming Fund surveillance data (2020-2023); and collected retrospective AMR records
for 599 patients that contained clinical outcomes and cost-of-illness economic burden data across 9 surveillance sites for objectives
3 and 4, respectively.

Conclusions: The data warehouse will promote access to rich and interlinked AMR and AMU data sets to answer AMR program
and research questions using a wide evidence base. The AMR-related clinical outcomes model and cost data will facilitate
improvement in the clinical management of AMR patients and guide resource allocation to support AMR surveillance and
interventions.

International Registered Report Identifier (IRRID): PRR1-10.2196/58116

(JMIR Res Protoc 2024;13:e58116) doi: 10.2196/58116
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Introduction

Antimicrobial resistance (AMR) is among the greatest threats
to global health and is predicted to become the leading cause
of death by 2050 [1,2]. Mortality due to AMR will rise from
700,000 deaths to 10 million deaths annually if nothing is done
to halt the current trends [3]. Indeed, in 2019, only 8 years from
when these projections were made, 1.27 million deaths were
attributed to AMR, higher than those due to HIV, malaria, and
tuberculosis [2]. Moreover, 4.95 million deaths were associated
with AMR [1]. If this trend continues unchecked, the world will
confront a reality where many infectious diseases have “no cure
and no vaccine” [4].

In addition, AMR has significant economic costs. The World
Bank estimates that AMR could result in US $1 trillion in
additional health care costs by 2050 and US $1 trillion to US
$3.4 trillion gross domestic product losses per year by 2030 [5].
The impact of higher AMR is unlikely to be spread equally,
with those more vulnerable likely to pay the highest price, as
low-income countries suffer the biggest proportionate loss of
population and economic output [4]. Low-income countries
disproportionately bear the AMR burden [6]. For instance, the
all-cause mortality in the review by the Antimicrobial Resistance
Collaborators was highest in low-income countries: 27.3 per
100,000 in western sub-Saharan Africa (SSA) compared with
6.5 per 100,000 in Australasia [2].

Despite this worrying burden in sub-Saharan Africa, AMR data
remain scant, and the systems to monitor and generate AMR
data are underdeveloped. The region has a low Joint External
Evaluation score of 53%, described as a voluntary, collaborative,
multisectoral score to assess a country’s capacity to prevent,
detect, and rapidly respond to public health risks whether
occurring naturally or due to deliberate or accidental events [7].
Many of the countries in the region lack national action plans
for AMR, alluding to AMR not being among their health
priorities [8]. In contrast, some high-income economies of
Europe and America had already instituted various regional and
national AMR action plans as early as 2014 [9-12].

AMR is a natural phenomenon and tends to arise from enzymatic
degradation, alterations in antimicrobial targets, or a change in

membrane permeability to the antimicrobials, leading to a longer
or no response to antimicrobial medicines [13,14].

Community-level drivers of AMR are diverse and enormous
yet usually ignored in AMR control strategies. Among the
antimicrobials, antibiotics are among the most abused due to
their easier accessibility, lower cost, and relative safety
compared with other antimicrobials [15]. Many people in the
communities use nonprescription-based acquisition of
antimicrobials from informal providers for both human and
animal use [16]. Such providers are usually poorly trained,
leading to wrong drug-pathogen matching, and are likely to be
motivated by financial gains to offer suboptimal doses or stock
substandard antimicrobials [17-19]. Drugs disposed of in this
way find their way into the environment, interact with
pathogens, and promote development of AMR in the
environment [20]. There is also widespread use of antimicrobials
in food-producing animals to treat and prevent disease or
promote growth [21]. AMR drivers among European countries
include human ambulatory consumption of antibiotics and per
capita expenditure on health, accounting for 74% of AMR
variation [19], accelerated by the misuse and overuse of
antimicrobials; poor infection prevention and control; limited
access to quality affordable medicines, vaccines, and
diagnostics; lack of awareness; and poor enforcement of
prescription regulations [1]. Overall, the drivers of AMR are
similar across various World Health Organization (WHO)
regions. Infections due to resistant microbes are more difficult
to treat, spread more, and are of higher severity, resulting in
increased morbidity, mortality, and cost of health care.

Antimicrobial misuse and overuse are the most critical drivers
of AMR. For example, a review of Slovenia’s surveillance data
showed that the prevalence of invasive Streptococcus
pneumoniae resistant to penicillin decreased by 47.1% following
a 32.8% decline in the area under the receiver operating curve
(AUC) [22]. In the same study, high consumption of
clarithromycin resulted in the selection and predominance of
macrolide-resistant Streptococcus pneumoniae. Therefore, given
the little global effort to develop new antimicrobials, the control
of misuse and overuse presents the best chance to tackle AMR,
more so in resource-limited settings.
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AMR is not without consequences to the individual and health
systems; for example, the impact of methicillin-resistant
Staphylococcus aureus on the management of
hospital-associated infections with severe complications,
prolonged hospital stays, mortality, and morbidity reduces the
clinical and economic outcomes for patients [23-26].

Treatment of AMR infections necessitates the use of more
expensive and potentially toxic medications, results in longer
hospital stays, and ultimately increases the cost of treatment
[1]. In addition, resistant infections pose a risk to specialized
medical procedures—such as organ transplants, surgical
operations, and cancer chemotherapy—denying many of these
critically needed services [1].

Grudlewska-Buda et al [27] described the rise of AMR in major
foodborne pathogens (Campylobacter spp., Salmonella spp.,
Escherichia coli, and Listeria monocytogenes) associated with
the declining effectiveness of β-lactams, sulfonamides,
tetracyclines, and fluoroquinolones and highlighting the risk of
resistant zoonotic infections.

Although AMR is often framed as a “silent pandemic,” recent
figures demonstrate that this is not accurate, especially
considering that its mortality and morbidity are gradually
increasing with the drivers of high antibiotic use in animals and
humans [28,29].

Furthermore, disability-adjusted life years (DALYs) are also
increasing, indicating a reduction in life expectancy and quality
of life [30]. Despite the importance of these parameters in
characterizing the AMR burden, they are not routinely available,
hindering comprehensive efforts to control the spread and effects
of AMR.

The proposed project therefore aims to close 4 important gaps
in AMR surveillance and interventions: (1) improve access to
AMR and antimicrobial use and consumption (AMUC) data;
(2) describe the AMR and antibiotic prescribing patterns,
changes in the patterns over time, and associated factors; (3)
determine the economic burden of excessive antibiotic use and
the effect on hospital budgets; and (4) develop a machine
learning model to predict the clinical outcomes of bacterial
infectious syndromes caused by resistant pathogens. We
hypothesize that this study will contribute to AMR and AMUC
surveillance, identification of priority antibiotics to target for
stewardship interventions, determining the cost implications,
and identifying characteristics of individuals more likely to have
poor clinical outcomes related to AMR so as to guide clinical
decisions and health system planning in the allocation of scarce
resources.

The overall objective of the study is to use data-driven
approaches to optimize antibiotic use and combat
antimicrobial-resistant infections in Uganda.

The specific study objectives are to (1) build a dynamic AMR
and AMUC data warehouse to support research in AMR and
AMUC to inform AMR-related interventions and public health
policy, (2) evaluate the trends in AMR and antibiotic use based
on annual antibiotic and point prevalence survey (PPS) data
collected at 9 regional referral hospitals over a 5-year period,
(3) develop a machine learning model to predict the clinical
outcomes of patients with bacterial infectious syndromes due
to drug-resistant pathogens, and (4) estimate the annual
economic burden of AMR in Uganda using the cost-of-illness
approach.

Methods

Study Design
The study will use different study designs for each of the 4
specific objectives.

For objective 1, we will conduct a data curation project aimed
at building an AMR and AMUC data warehouse from prior and
future AMUC surveys and routine AMR surveillance data from
patients with bacterial infectious syndromes.

For objective 2, we will use a retrospective study using annual
antibiotic surveys (AAS) and PPS data to determine the trends
in antibiotic use and AMR using data accrued over a 5-year
period.

For objective 3, we will conduct a modeling study in which a
machine learning model will be developed to predict the clinical
outcomes of patients with bacterial infectious syndromes due
to resistant pathogens.

For objective 4, we will conduct a prevalence-based,
cost-of-illness, descriptive study to assess the economic burden
of AMR in Uganda by determining the average cost per AMR
case.

Study Settings
This study will use data already accrued under the Fleming
Fund project or abstracted from clinical and other records at the
Fleming Fund project–supported surveillance sites during the
study period. The Fleming Fund Country Grant project
(2018-2026) is a health system strengthening project to improve
AMR surveillance at 9 regional referral hospitals (RRHs) in
Uganda. The surveillance sites include Arua RRH, Gulu RRH,
Lira RRH, Soroti RRH, Mbale RRH, Jinja RRH, Masaka RRH,
Mbarara RRH, and Kabale RRH. The RRHs are spread across
the different regions of the country (Figure 1) and are the first
level of specialized health care in Uganda with specialist health
workers and services.
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Figure 1. Geospatial representation of the human health antimicrobial resistance surveillance sites in Uganda. RRH: Regional Referral Hospital.

Study Population
The study will use records of patients with bacterial infectious
syndromes attending the surveillance sites for health care.

Inclusion Criteria
All medical records of patients with bacterial infectious
syndromes attending the major hospital wards including the
medical, surgical, pediatric, gynecology, and maternity wards
and the outpatient department are eligible for the study. Further,
records related to medicines and supplies procurement as well
as human resources and utility bills will be targeted by the study
for the cost-of-illness evaluation.

Exclusion Criteria
For the AMR data, records without antimicrobial susceptibility
test (AST) results will be excluded from the study.

Study Procedures

Case Ascertainment
The patients with bacterial infectious syndromes will be
identified from the diagnoses made by the attending clinicians

and recorded in the patients’ clinical records. The resistant
infections are determined from the AST results of the cultured
samples showing resistance to at least one antibiotic.

Data Sources
Data will be abstracted from the procurement and human
resources records and the clinical records of patients with
bacterial infectious syndromes attending Arua RRH, Gulu RRH,
Lira RRH, Soroti RRH, Mbale RRH, Jinja RRH, Masaka RRH,
Mbarara RRH, and Kabale RRH.

Data Elements Collected
The treatment-related variables collected include referral status,
age, gender, occupation, ward, residence, prior antibiotic
treatment, date of admission, date of sample collection, sample
type, diagnosis, and AST results. ASTs were performed using
the Kirby-Bauer disc diffusion method according to the updated
Clinical Laboratory Standards Institute M100, 30th, 31st, 32nd,
and 33rd editions [31-34]. The AMUC variables collected
include ward, number of prescribed antibiotics, number of
prescriptions, number of injectable antibiotic prescriptions,
prescriptions by generic name, prescriptions according to
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guidelines, prescriptions with appropriate diagnosis, cultures
requested, prescriptions based on AST, missed doses, patients
with missed doses, referrals, days spent on the ward, and number
of hospitalizations in the last 90 days.

The clinical parameters to be collected will include temperature,
blood pressure, level of antibiotic resistance, antibiotic type,
diagnosis, prior antibiotic exposure, site of infection, duration
of symptoms, timing of effective antimicrobial treatment, and
medical comorbidities, while the clinical outcomes will include
duration of hospital stay, time to clinical improvement, time to
negative cultures, mortality, medical complications, disability,
and the cost of treatment.

The cost-of-illness variables will include direct medical costs
(personnel, medical supplies, drugs, laboratory tests, and patient
out-of-pocket costs), direct nonmedical costs (recurrent
expenditures such as utility bills), capital expenditures (such as
expenditures on hospital or health facility infrastructure), patient
transportation, and patient upkeep while seeking medical care.
Indirect costs will include productivity losses due to
illness-related absenteeism, reduced work hours, disability, or
premature mortality, as well as informal care provided by family
members or friends.

Data Abstraction Procedure
AMR data are collected during the routine care of patients with
bacterial infectious syndromes at the surveillance sites. The
process includes the identification of patients requiring
sampling, drawing of the sample using appropriate techniques,
transportation of the sample to the laboratory, sample integrity
assessment, sample processing, recording of results on paper
and in electronic data systems, and reporting of results for
clinical management of the patients. On the other hand, AMUC
data are collected through quarterly PPS and AAS. During PPS,
data are abstracted from the records of all patients on the wards
for at least 24 hours; AAS data are abstracted from 100
systematically selected records of patients seen at a particular
ward in the last year. During PPS and AAS, data are collected
from 6 hospital units including the outpatient department and
medical, surgical, gynecology, pediatric, and maternity wards.
The clinical outcome and cost-of-illness data will also be
abstracted from the clinical, procurement, and human resource
records alongside the PPS data over 3 quarters. The clinical
outcome data will be collected from the 5 hospital units
including the medical, surgical, gynecology, pediatric, and
maternity wards.

The laboratory request form, laboratory results register,
WHONET, and African Laboratory Information System are
used to collect the AMR data, while AMUC data are collected
using the WHO PPS tool and a standardized Microsoft Excel
tool based on the WHO/ International Network for Rational
Use of Drugs drug use indicator for the AAS data. The PPS tool
is built in Open Data Kit (ODK), an Android app with offline
capabilities installed on mobile smart devices including mobile
phones and tablet computers and used for collecting, managing,
and using data. The abstraction tool was pretested to evaluate
the validation rules in ODK and to ensure the completeness,
reliability, and validity of the tools. The AAS data are collected
annually over a period of 2 weeks for each facility, while the

PPS data are collected quarterly over a period of 2 days for each
facility. The clinical outcome and cost-of-illness data will be
collected quarterly using data abstraction forms built in REDCap
[35].

Hospital pharmacists who are supervised by the senior
pharmacists and doctors abstract the data after being trained on
the data collection tools and the approach for collecting
antimicrobial use (AMU) data. The supervisors review each
completed form immediately after collection, and the finalized
form is submitted to the server, after which it cannot be edited
further. Appropriate use is assessed using the current Uganda
Clinical Guidelines.

Sample Size

Objective 1
All patients with bacterial infectious syndromes who access the
surveillance sites for routine medical care are the primary source
of the AMR data. The project has data on 12,366 patients over
the last 4 years. We have also collected AMUC data on 13,500
patients over an 8-year period. We will also supplement these
data with PPS data from 18,000 patients from AAS, giving a
total of 31,500 patient records. As more data are gathered using
the aforementioned data gathering techniques, the sample size
will continue to increase for the periodic assessments.

Objective 2
The main outcome is the trends in the prevalence of antibiotic
prescriptions. We used the following formula for sample size
estimation for a proportion:

sample size = p(1-p)×(z/e)^2×n/[(1+(n-1))×r]

where z is the z score corresponding to the desired confidence
level (in this case z=1.96 for a 95% CI), p is the estimated
prevalence of antibiotic use (using 74% as the prevalence
determined by Kiggundu et al [36] in 13 hospitals in Uganda),
e is the margin of error expressed as a proportion (assumed to
be 0.03), n is the number of clusters (in this case, the 9
surveillance sites), and r is the estimated intracluster correlation
coefficient. The prevalence was similar across our surveillance
sites; therefore, we used r=0.9 [36]. The sample size for each
r o u n d  o f  s u r v e y  w a s  d e t e r m i n e d  a s
0.74×(1-0.74)×(1.96/0.03)^2×9/((1+(9-1))×0.9) = 903.

Medical records of 100 patients from each of the major units
including medical, surgical, pediatric, gynecology, and
obstetrics/maternity wards and the outpatient department were
selected for the AAS using systematic sampling. The nth patient
was identified by dividing the total number of patients seen per
year in each ward by 100 (the sample size). Therefore, 600
medical records were selected at each of the 9 surveillance sites
during each survey, resulting in 27,000 (600×9×5) records in 5
years. On average, 20 to 30 records from each ward are included
in the PPS, and 100 to 150 records from the 5 wards are
considered for each of the 9 hospitals. Therefore 9000
(9×5×20×10) to 13,500 (9×5×30×10) records have been used
for the last 10 PPS carried out to date. A total of at least 40,500
(27,000+13,500) records will provide the data for this
evaluation. Therefore, the accrued data are sufficiently powered
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to estimate the prevalence and its trends over the evaluation
period.

Objective 3
Generally, there is no fixed sample size for machine learning
algorithms but the more data, the better the accuracy of the
model at predicting the outcome. However, for prediction
models, the rule of thumb for the sample size is to have at least
10 events for each predictor variable [37,38]. Therefore, the 18
variables that will be abstracted as outlined in the Data Elements
Collected section would require at least 18×10=180 records.
However, the study will utilize all available data from patients
with bacterial infectious syndromes due to resistant and
susceptible bacterial infections accrued through the quarterly
data abstraction. We will use 70% of the data to train, while
30% of the data will be used to test the ability of the machine
learning algorithm to predict the clinical outcomes of the patients
with bacterial infectious syndromes.

Objective 4
Cost-of-illness or economic burden evaluations, unlike
cost-effectiveness studies, are not typically based on a particular
sample size [39]. The study will therefore utilize data from all
patients with bacterial infectious syndromes due to resistance
and those with susceptible bacterial infections and other related
costs accrued through the quarterly data abstraction for this
AMR economic burden evaluation.

Statistical Analysis

Objective 1

Expected Outcome

The expected outcome is a refined and dynamic AMR and
AMUC data warehouse that is linkable to other databases to
enable collaborative research and programming for
decision-making, policy formulation, and quality improvement
projects.

Building the Data Warehouse

Building the data warehouse will comprise all data curation
steps including cleaning, merging, cataloging, and integration.
The data variables will be aligned to national and international
AMR and AMUC indicators for easy alignment to contemporary
literature. The curated data will be uploaded to a secure
repository, which will be continuously updated as more data
are accrued. The data repository will be housed in the African

Centers of Excellence in Bioinformatics and Data Intensive
Science (ACE) High-Performance Scientific Computing (HPC)
IT infrastructure at the Infectious Diseases Institute (IDI). The
HPC has 40 nodes, of which only 20 nodes are currently in use.
The other nodes will be connected once demand increases. Each
node has 32GB of RAM and 16 cores. It also has 120TB of
Synology storage supported by a 30KVA inverter system that
provides extra uptime in the event of a power outage and a
monitoring system that monitors HPC systems for power surges
and internet outages. It has a voltage stabilizer and batteries that
last for up to 2 hours to 3 hours. Access to the HPC system is
via a password-protected user account that is associated with
an active email address, and all first-time users of the HPC must
undergo a mandatory training session. Access to the servers
will be via a Secure Shell (SSH) protocol to respective login
nodes with access to compute nodes via the job scheduler
(Slurm). User data directories and shared data directories will
be backed up to enable recovery in the event of data loss.

The warehouse will adhere to the FAIR principles: (1) findable:
where the data are easy to find by humans and computer and
machine metadata standards and tags based on a defined criteria;
(2) accessible: found data will be accessible through appropriate
authentication and authorization; (3) interoperable: the accessed
data would be interactable with other data sets through different
applications and workflows for analysis, storage, and processing;
and (4) reusable: the data will be well-indexed so that it can be
replicated or combined with other data sets to interrogate wide
research, surveillance, and stewardship questions.

Access to the data warehouse will be managed by role-based
access control for the warehouse developers, where system
administrators will assign user roles and manage access for each
role. For the researchers and program investigators, the process
to access the data in the warehouse will include submitting a
data request form and the concept for intended use. The data
request form will specify the type of data and the specific
variables required. A scientific committee will review the
concept and will recommend whether access should be granted.
Before the data are accessed, the researcher or investigator will
sign a data use agreement defining the terms under which the
data will be used.

Objective 2
The objective 2 outcome variables will be derived as indicated
in Table 1.

JMIR Res Protoc 2024 | vol. 13 | e58116 | p. 6https://www.researchprotocols.org/2024/1/e58116
(page number not for citation purposes)

Mayito et alJMIR RESEARCH PROTOCOLS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Table 1. Variables to assess objective 2 regarding antimicrobial use: measuring the impact on selected drug use indicators.

DisaggregationIndicator definitionIndicator

DenominatorNumerator

Total number of patients included
in the sample

Total number of antibiotic prescrip-
tions

Proportion of prescriptions with at
least one antibiotic

• Gender of the patients
• Age of the patients

Total number of antibiotic prescrip-
tions

Total number of antibiotic prescrip-
tions with an injectable antibiotic

Proportion of prescriptions with an
injectable antibiotic

• Gender of the patients
• Age of the patients

Total number of antibiotic prescrip-
tions

Number of antibiotic prescriptions
with a diagnosis that does not war-
rant an antibiotic

Proportion of antibiotic prescrip-
tions with a diagnosis that does not
warrant an antibiotic

• Gender of the patients
• Age of the patients

Total number patients diagnosed

with a URTIa
Total number of antibiotic prescrip-
tions for upper respiratory tract in-
fections

Proportion of antibiotic prescrip-
tions for upper respiratory infections

• Gender of the patients
• Age of the patients

Total number of antibiotics prescrip-
tions

Total number of antibiotic prescrip-

tions in accordance with UCGc

2016/2023 (antibiotic, dose, and
frequency)

Proportion of antibiotic prescrip-

tionsb in accordance with current
treatment guidelines

• Antibiotics prescribed by

WHOd AWaRee

Total number of antibiotic prescrip-
tions

Total number of antibiotic combina-
tions with overlapping coverage

Proportion of antibiotic combina-
tions with overlapping coverage

• Antibiotics prescribed by
WHO AWaRe

aURTI: upper respiratory tract infection.
bPrescription involving at least one antibiotic.
cUCG: Uganda Clinical Guidelines.
dWHO: World Health Organization.
eAWaRe: Access, Watch, Reserve.

Trend analysis will be used to derive the slope coefficient for
the trends in the proportion of each antibiotic and level of AMR
over a 5-year period for the 9 RRHs. The trends will be
disaggregated by age, gender, bacterial infectious syndromes,
wards, and bacteria types, among others.

Objective 3

Expected Outcomes

The expected outcome is a machine learning model to predict
the clinical outcomes (length of stay, mortality, time to clinical
improvement, mortality, and disability) of patients with bacterial
infectious syndromes due to resistant pathogens using clinical
parameters and demographics. The model will be deployed as
a web or mobile device app-based physician assistant that can
be used as a point-of-care aid in the management of patients
with AMR.

Building the Machine Learning Algorithm

The abstracted data will routinely be curated and standardized;
the diagnosis will be reported per the International Classification
of Diseases 11 [40]. Several classification machine learning
algorithms including logistic regression, artificial neural
networks, support vector machines, random forest, and
AdaBoost will be trained, and their performance will be
evaluated by computing their accuracy, F1 score, precision,
recall, and the AUC using a confusion matrix. The clinical
outcomes of patients with bacterial-resistant infections will then
be compared with those with susceptible infections using a
chi-square test for categorical variables and nonparametric or
parametric tests for the continuous data depending on the

distribution of the data. The pipeline and derived algorithms
will be stored on secure servers with access limited to only
authorized personnel using the role-based access control model.

Objective 4

Expected Outcomes

The main outcome of this cost-of-illness analysis will be the
cost per AMR case from societal and payer (government)
perspectives.

Analysis of Outcome Variables

Data to parameterize the model will be obtained from the data
warehouse and published gray literature. The activity-based
(micro-costing) technique will be used to estimate the cost of
diagnosis using the cost information in records related to the
procurement of medicines, including antibiotics; AMR-related
investigations; and clinical care of patients with AMR at the 9
surveillance sites.

The micro-costing technique decompounds each service (ie,
diagnosis and treatment options) into the inputs and quantity
required to provide it. The best price for each input will then
be found and multiplied by the amount needed. The sum of all
inputs provides a good estimate of the cost per intervention.
Given that the analysis will be conducted from both the societal
and payer (government) perspectives, direct medical costs, direct
nonmedical costs, and indirect (productivity) costs will be
included.
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Estimating the Direct Medical Costs of AMR

To estimate direct medical costs, we will use the available
databases of AMR data at IDI and the Ministry of Health
(MOH). These data will aid in estimating the resource use and
costs of identified AMR cases. Data on health resource
use—drugs, laboratory tests, and other supplies—will be
obtained from the literature to estimate the type and quantity
of resources, which will then be multiplied by the unit costs
obtained from the available price catalogs (from either Uganda’s
Joint Medical Stores or Management Sciences for Health).
Regarding personnel-related costs, we will use the opportunity
cost of paid time for all health workers. Data on revised salaries
will be obtained from the MOH or Ministry of Public Service
to improve the precision of wage estimates.

All records related to the procurement of medicines including
antibiotics, AMR-related investigations, and health care of
patients with AMR at the 9 RRH surveillance sites over the
5-year period will be reviewed, and data will be abstracted. All
the volumes and related costs of medicines procured,
AMR-related investigations, and health care by the surveillance
site over the evaluation period will be considered. All National
Medical Stores invoices and delivery notes for each delivery
cycle over the 5-year period will be reviewed, and data will be
extracted for the volume of drugs delivered to the surveillance
site, issued to the different units, and the unit cost of each
medicine. In addition, information on clinical care including
length of stay, investigations, and other medicines will be
extracted. The parameters of interest will include volume and
types of medicines and the cost of the medicines; types and cost
of investigations; time of stay in the hospital; other costs of
health care of patients with AMR, hospital medicines,
investigations, and other sundries for clinical care; and total
budget.

Estimating the Direct Nonmedical Costs of AMR

The overhead and recurrent costs related to outpatient and
hospital treatment of AMR complications will be estimated
from the available data in the MOH and IDI databases and the
WHO-CHOICE (World Health Organization Choosing
Interventions That are Cost-Effective) database for Uganda. All
capital costs will be annualized using a discount rate of 3% with
an assumed lifespan of 30 years for buildings, 5 years for
computers, and 10 years for furniture to estimate the actual
economic and opportunity costs. Other costs, such as
transportation and upkeep for patients, will be obtained from
the literature if unavailable at the MOH or IDI.

Estimating the Indirect Costs of AMR

Productivity losses for patients and their caregivers due to
AMR-related morbidity and mortality will be estimated using
the friction cost approach. The friction cost approach estimates
the friction period—the time it takes an organization to replace
an absent worker due to morbidity or mortality—and largely
depends on the country’s unemployment rate [41,42]. We will
sum up the lost time spent in transit to hospitals or health
facilities (for patients and caregivers), seeking care,
convalescing, and being admitted to a hospital (for patients and
caregivers). The time lost will be valued at Uganda’s gross
domestic product per capita as a proxy for wages, given the

unavailability of these data in Uganda. The friction period
accounts for absenteeism (actual absence from work) and
presenteeism (available but not at the full productive level, thus
affecting the workflow). Given Uganda’s unemployment rate
of 12% [43], we will benchmark the published and gray
literature to estimate the friction period for Uganda and indirect
costs associated with AMR [42]. All future costs will be
discounted at an annual rate of 3%, as recommended by the
second panel on cost-effectiveness in health and medicine [44].

The societal cost will be the summation of direct medical costs,
direct nonmedical costs, and indirect costs, while the payer cost
will only include direct medical and direct nonmedical costs.
The total cost for antibiotics, essential medicines, and other
AMR-related health care costs will be derived from the product
of the volume of the items consumed, duration of the provision
of services, and the unit cost of each.

The main study outcome will be the cost per AMR case from
societal and payer (government) perspectives. This will be the
sum product of the quantity of resources needed to treat 1 AMR
case and its unitary costs. All costs will be converted to US
dollars using the bank of Uganda official exchange rates, while
costs from the literature will be inflated to the reporting calendar
year using the local consumer price indices. Given the
ever-present uncertainty surrounding parameter estimates, we
will assign different distributions to each model parameter using
the 95% CIs and standard errors if available and, if unavailable,
using a ±50% range. Monte Carlo simulation will be used to
generate 1000 iterations of the model results; these new
estimates will provide the cost of an average case of AMR with
a 95% credibility range around the estimated cost. We will also
perform a 1-way sensitivity analysis—presented as a tornado
diagram—to determine which variables greatly influence costs.
All analyses will be programmed in Microsoft Excel and
supported by R software (version 4.3.0).

Ethical Considerations
This study was approved by the IDI Research Ethic Committee
(IDI-REC-2023-67:), which also granted a waiver of consent.
The study was also approved by the Uganda National Council
for Science and Technology (UNCST - HS3690ES). No
participants’ identification information will be used in the
dissemination or publication of the study results.

Results

The study received funding from the Wellcome Trust through
the Centers for Antimicrobial Optimisation Network
(CAMO-Net) in April 2023. As of October 28, 2024, we
completed data warehouse development, which is now under
testing; completed data curation of the historical Fleming Fund
surveillance data (2020-2023); and collected retrospective AMR
records for 599 patients that contained clinical outcomes and
cost-of-illness economic burden data across 9 surveillance sites
for objectives 3 and 4, respectively.

Discussion

This study will create a data warehouse and analyze AMR and
AMUC rates and trends using data science and traditional
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statistical approaches. We will also determine the associated
societal costs in Uganda and develop a machine learning model
to predict AMR-related clinical outcomes. The dearth of data
on AMU and AMR trends, clinical outcomes related to AMU
and AMR, and the economic burden of AMR on the health care
system is a major hinderance to policy formulation, stewardship
interventions, and resource allocation.

The proposed data warehouse will help organize the AMR and
AMUC data, making it accessible and linkable to other databases
to allow deeper data mining to answer research and program
questions through individual and collaborative research. This
will contribute to one of WHO’s AMR surveillance plan pillars
of generating knowledge through generation of quality data and
evidence [45,46]. On the other hand, a concise description of
AMR and AMU trends is critical to inform stewardship
interventions to combat the escalating burden of AMR.
Surveillance reports estimate that the AMR burden including
mortality is disproportionately borne by SSA, but this has not
been fully evaluated due to the scarcity of data in the region
[47]. Further, optimization of AMU is important to address one
of the biggest drivers of AMR in this setting—the overuse and
misuse of antimicrobials [16,48,49]. By exploring AMU trends
and the influencing factors, the study will inform strategies to
address this problem.

Since the institution of the Global Antimicrobial Resistance and
Use Surveillance System (GLASS) in 2015, Uganda, like many
other countries in SSA, has developed its national action plan
on AMR and started generating AMR and AMU surveillance
data [50]. However, the AMR data generated lack information
on certain aspects of the AMR burden including clinical

outcomes (eg, disability and mortality) and the AMR economic
burden [30]. Moreover, the few reports indicate that the DALYs
for those who survive AMR are higher [51] and might equal to
those of influenza, tuberculosis, and HIV combined [30]. This
limits the optimization of clinical care for patients with AMR
as well as national planning of AMR programs and guidance
for resource allocation. This study will use machine learning
algorithms and cost-of-illness estimation approaches to fill these
critical gaps in the Uganda AMR surveillance data.

Our study’s strength lies in its focus on critical gaps currently
limiting AMR surveillance in SSA and its multipronged
approach to address the gaps including data science and
economic evaluation approaches. This will provide information
based on a wide and robust evidence base to inform AMR
clinical management and control policies. The study is limited
by the lack of a qualitative assessment of the gaps, which would
have provided a comprehensive overview of the drivers of AMR
and better informed the policy formulation process. Further, the
use of retrospective data will pose challenges regarding missing
variables and the inability to control for confounders for the
observed outcomes, while the economic evaluation will impute
some variables from the literature that are not routinely
collected, which may bias some of the conclusions.

In conclusion, the data warehouse will promote access to AMR
and AMU data to answer AMR program and research questions
using a wide evidence base. The AMR-related clinical outcomes
and AMR economic burden data will facilitate improvement in
clinical management of patients with AMR and guide resource
allocation to support AMR surveillance and interventions.
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