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Abstract

Background: Freezing of gait (FoG) is one of the most disabling symptoms of Parkinson disease (PD). Detecting and monitoring
episodes of FoG are important in the medical follow-up of patients to assess disease progression and functional impact and to
adjust treatment accordingly. Although several questionnaires exist, they lack objectivity. Using wearable sensors such as inertial
measurement units (IMUs) to detect FoG episodes offers greater objectivity and accuracy. There is no consensus on the number
and location of IMU, type of algorithm, and method of triggering and scoring the FoG episodes.

Objective: The objective of this study is to investigate the use of multiple wearable sensors sets to detect FoG in patients with
PD during various walking tasks under different medication conditions.

Methods: This single-center, prospective cohort study (DetectFoG) will include 18 patients with PD. Patients will be fitted with
7 IMUs and will walk a freezing-provoking path under different tasks—“single task,” “dual motor task,” or “dual cognitive
task”—and medical conditions corresponding to levodopa medication (“on” or “off”). Passages will be videotaped, and 2 movement
disorder specialists will identify FoG episodes in the videos. The accuracy, sensitivity, specificity, positive predictive value, and
negative predictive value of the most effective combination of wearable sensors for detecting FoG episodes will be studied.

Results: The study is currently in the data collection phase, having commenced recruitment in February 2024. Once all data
have been gathered, the data analysis will commence. As of August 2024, 3 patients have been recruited. It is anticipated that the
results will be published by the end of 2025.

Conclusions: Detecting FoG episodes in various medical and clinical settings would provide a more comprehensive understanding
of this phenomenon. Furthermore, it would enable reliable and objective monitoring of the progression of this symptom based
on treatments and the natural course of the disease. This could serve as an objective tool for monitoring patients and assessing
the severity and frequency of FoG.

Trial Registration: Clinicaltrials.gov NCT05822258; https://www.clinicaltrials.gov/study/NCT05822258

International Registered Report Identifier (IRRID): DERR1-10.2196/58612

(JMIR Res Protoc 2025;14:e58612) doi: 10.2196/58612
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Introduction

Affecting more than 8.5 million people worldwide in 2019,
Parkinson disease (PD) is the second most common
neurodegenerative disease [1]. PD is diagnosed using criteria
from the UK Parkinson’s Disease Society Brain Bank [2] and
is defined by the cardinal symptoms of tremor, bradykinesia,
rigidity, and postural instability, along with other motor and
nonmotor symptoms [3].

Among the various motor symptoms, freezing of gait (FoG),
defined as a “brief and episodic absence or marked reduction
in the forward progression of the feet despite the intention to
walk” [4], is one of the most disabling symptoms of PD. In
advanced and severe forms of PD, FoG occurs in 50% to 80%
of cases [5]. FoG is correlated with PD severity and disease
duration [6]. It increases the risk of falls [7] and loss of
independence and affects patients’ quality of life [8].

The detection of FoG episodes is an important issue for patient
follow-up and treatment adjustment. Various subjective and
objective methods can be used to assess these symptoms. Daily
completion of a motor diary by the patient is one possibility for
assessing these symptoms, but it relies on the patient’s subjective
judgment and is often discontinued after a few days or is not
feasible in the presence of cognitive impairment [9]. Objective
scores with predefined exercises (eg, double spot walking, 180°
turning, etc) are available to assess FoG episodes during medical
consultations; however, these exercises do not always trigger
FoG episodes due to several reasons. First, the phenomenon
known as the “white coat effect,” whereby patients may perform
differently in the presence of medical professionals, can alter
their natural response and reduce the likelihood of FoG episodes
[10]. Second, the structured nature of clinical assessments often
causes a switch from automatic to goal-directed pathways,
reducing the occurrence of FoG episodes, which typically occurs
in more automatic walking scenarios [11]. Finally, the
predefined exercises are constrained by time, unfamiliarity, and
the artificiality of the clinical environment, which can influence
patients’natural gait patterns. Thus, they fail to provide accurate
information on the frequency and severity of FoG episodes in
daily life [11]. One potential alternative method involves
videotaping patients in different contexts and conducting a
postscored examination, considered the gold standard, although
this approach demands time and expertise [11].

To overcome these limitations, wearable sensors, such as
electromyographs, electroencephalography electrodes, or inertial
measurement units (IMUs), provide a solution for automatic
FoG detection. The combination of accelerometer and
gyroscopes data from an IMU seems to be the most widely used
solution with high performance (sensitivity: 86%; specificity:
92.9% [12]). This compact sensor is easy to install and allows
FoG assessment both in clinical practice and during daily living
[9,13].

Despite numerous studies and literature reviews on the use of
these wearable sensors for FoG detection, there is as yet no

consensus in the literature on the optimal methodology for their
use. It is likely that this discrepancy stems from the inherent
variability in the protocols used. Indeed, there is considerable
heterogeneity in the protocols for triggering [11] (medical
condition: “on” or “off” levodopa treatment; freezing-provoking
path; and dual-task conditions). In fact, there are few studies
that directly compare FoG episodes in “on” and “off” conditions
with small cohorts and a low number of participants [11,12,14].
Furthermore, many locations including feet, shin or ankle, thigh,
and pelvis have been investigated [15]. The use of multiple
sensors provides a more detailed and holistic view of the
patient’s movements, enabling the capture of subtle changes
that may not be detectable with a single sensor [15]. An IMU
is cost-effective and straightforward to wear, rendering it
suitable for both laboratory evaluation and daily use. Even if
patients prefer to wear sensors solely at the wrist, such as a
stopwatch, or conceal them beneath clothing at the ankle or on
a belt (lower back), as demonstrated by O’Day et al [15], the
placement of sensors on multiple body parts could enhance the
robustness of FoG detection across various walking tasks and
different FoG subtypes. Furthermore, examining FoG under
dual-task conditions provides a more comprehensive
understanding of how cognitive load impacts freezing episodes,
which only a few studies have addressed [16-20]. Finally,
several other variables may confound the study, including the
wide age range of cohorts (aged 7-118 years) and the diverse
range of FoG episodes (50-1110) [21-23]. Therefore, this study
is innovative as it stands out for its ability to replicate findings
across various conditions, particularly the medical condition.
Furthermore, it explores the effects of dual-task scenarios and
optimal sensor placement in a larger cohort than those found in
the literature, significantly enhancing our understanding of the
underlying mechanisms. These multiple dimensions provide a
more nuanced and robust perspective, allowing for better
generalization of the results and improving practical applications
in medical settings.

Regardless of the wearable sensors used or the freezing protocol,
the accuracy of detection is sensitive to the type of algorithm
[9,11,12,23]. Yet, the algorithms used to detect FoG episodes
are controversial, especially for real-time detection. The
threshold method provides a straightforward approach to the
implementation and interpretation of algorithms. In this context,
the freezing index—defined as the ratio between the power
bands of freezing (3-8 Hz) and locomotion (0.5-3 Hz)—is the
most commonly used feature in threshold-based algorithms
[9,11,12,23]. This single feature accurately detects many FoG
episodes (sensitivity: 84.3%; specificity: 78.4% [24]), but
detection fails when no motion is observed and voluntary stops
may be mistakenly classified as FoG [17]. Adding multiple
indices can enhance algorithm performance, but it also increases
complexity and the difficulty of tuning thresholds [25,26]. To
address these limitations, machine learning (ML) algorithms
have been developed to improve FoG detection performance.
Indeed, ML algorithms could better fit the model to increase
the accuracy of the models; this is a subfield of artificial
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intelligence that gives an algorithm the ability to learn without
being explicitly programmed [12]. Among the various ML
algorithms, support vector machine, multilayer perceptron, and
ensemble classifiers (eg, random forest or AdaBoost) have
proven to be the most efficient. Determining the best ML
algorithm is challenging due to the highly heterogeneous nature
of the training data. A limitation of ML algorithms is that
training the model and processing the data can require high
computational cost. Fortunately, advances in computer
technology now offer the possibility of early or real-time
detection with ML models [12].

The primary objective is to assess the accuracy of the optimal
combination of wearable sensors for detecting FoG episodes in
patients with PD. The secondary objectives of this study include
measuring the specificity, sensitivity, positive predictive value
(PPV), and negative predictive value (NPV) of the optimal
combination of wearable sensors for detecting FoG episodes.
Regarding the setup, we also aim to compare its performance
(accuracy, sensitivity, specificity, PPV, and NPV) across various
clinical and medical conditions.

Methods

Study Design and Participants
This study is a single-center, prospective cohort trial
(DetectFoG) involving patients with PD with FoG at the
University Hospital of Rennes. Patients will be recruited from
the neurology department of University Hospital of Rennes
during their visit to the neurologist. This study aims to include
a total of 18 patients. To mitigate potential issues such as
withdrawal of consent, absence of FoG during neurologist
annotation, loss of follow-up (failure to attend the second visit),

or inability to complete the required number of passages (fewer
than 6), initially, 20 patients will be enrolled. Participants
experiencing any of these issues will be excluded from the study.

Inclusion criteria will include patients older than 18 years
diagnosed with PD according to the UK Brain Bank criteria.
Patients must self-report as freezers, scoring between 1 and 3
on question 13 of the Movement Disorder Society-Unified
Parkinson’s Disease Rating Scale (MDS-UPDRS) II [27], and
be capable of walking 30 m without assistance to complete the
freezing-provoking path. Exclusion criteria will apply to patients
scoring less than 20 out of 30 on the Montreal Cognitive
Assessment [28] who are unable to give informed consent and
those with neurological, orthopedic, or rheumatic comorbidities
that could impact gait and ability.

Ethical Considerations
The study design was approved by the ethical committee of Ile
de France III (23.01067.000298-MS01) on October 1, 2023.
All data collection will adhere to applicable guidelines and
regulations. Participants will provide informed consent before
enrolling in the study.

Protocol
After verifying the inclusion and exclusion criteria, the
neurologist will notify the principal investigator (KJ). The
principal investigator will then contact the patients to provide
comprehensive and understandable information about the study’s
objectives, as well as their right to refuse participation or
withdraw at any time. If the patients consent and sign the
consent form, they will participate in 2 visits separated by 2
weeks (±7 days), encompassing both “on” and “off” phases of
levodopa treatment (Figure 1).

Figure 1. Timeline of study. IMU: inertial measurement unit.

For organizational purposes, the first visit (inclusion visit) will
occur during the “on” phase of levodopa medication, while the
second visit (follow-up visit) will be during the “off” phase.
During the “on” phase, patients will be assessed when oral
treatment maximally improves dopa-sensitive PD symptoms
(best “on” state, typically 1-2 hours after ingestion). This state

will be determined based on patients’ subjective assessment,
similar to their daily motor self-assessments (home diaries),
which has been established as reliable in various studies [29-31].
Assessment during the “off” phase will occur after 12 hours
without treatment, preferably in the morning before the first
levodopa dose.

JMIR Res Protoc 2025 | vol. 14 | e58612 | p. 3https://www.researchprotocols.org/2025/1/e58612
(page number not for citation purposes)

Cordillet et alJMIR RESEARCH PROTOCOLS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


During each visit, participants will walk on a freezing-provoking
path at a comfortable speed under 3 different clinical conditions
(single task [ST], dual cognitive task [DCT], and dual motor
task [DMT]). The Pardoel freezing-provoking path, known to

induce FoG episodes [32], includes standing up, walking with
a slalom (left and right turns), navigating a narrow passage with
a 180° turn, and returning straight, with 2 designated stops—one
chosen by the patient and another in front of a chair (Figure 2).

Figure 2. Freezing-inducing path (adapted from Pardoel et al [32], which is published under Creative Commons Attribution 4.0 International License
[33]).

Participants will undergo testing under different dual-task
conditions, which are recognized for promoting FoG episodes
[32]. The DMT involves walking with a ball on a tray within a
drawn circle, keeping the ball centered. The DCT requires
participants to generate as many words as possible starting with
a specified letter. Each participant will complete a maximum
of 6 blocks, with each block consisting of the 3 conditions (ST,
DCT, and DMT), resulting in a total of 18 trials (6 blocks × 3
conditions per block). The sequence of conditions within each
block will be randomized to mitigate any order effects. This
protocol accommodates varying endurance levels among
patients; some may complete each block quickly with few or
no FoG episodes, while others may take longer due to frequent
tremors that consume energy. This flexible approach ensures
that the study is comprehensive and respects each patient’s
physical limitations. However, participants who complete fewer
than 2 blocks (6 trials) will be excluded from the analysis to
ensure adequate data collection.

Data Collection (and Preprocessing)

Clinical Data
Various patient data are collected, including age, sex, laterality
of symptoms, duration of PD, lateralization of symptom onset,
daily dose of levodopa equivalent, MDS-UPDRS III score [27],
Freezing of Gait Questionnaire (FoGQ; “on” and “off” phases)
[34], Hoehn and Yahr Scale (“on” and “off” phases) [35], and

Schwab and England Scale (“on” and “off” phases) [36]. The
FoGQ is used to assess the characteristics of FoG. The Hoehn
and Yahr Scale and the Schwab and England Scale serve as
tools for the overall evaluation of patients with PD: the former
to gauge disease severity and the latter to evaluate daily life
impact, functional status, and level of dependence.

FoG Measurement

IMU Measurements

Patients will wear the Trigno Avanci IMU (Delsys; Figure 3),
which includes a triaxial accelerometer, gyroscope, and
magnetometer. Data will be transmitted via Bluetooth and
collected using the Delsys application programing interface and
then transferred to QTM 2020 software (Qualisys). The software
manages recording at a sampling frequency of 148.15 Hz and
synchronizes with cameras. While this sampling frequency is
higher than that in some studies, it has been previously used,
similar to the approach taken by Camps et al [37]. This
frequency is selected to ensure that all nuances associated with
FoG, particularly micromovements, are captured. IMU data will
also undergo windowing with a 2-second window length and a
0.4-second shift. A trained operator will position the sensors
manually, aligning them with anatomical axes. Seven IMUs
will be placed as follows: 1 on each thigh (lateral side, upper
third), 1 on each fibula (upper third), 1 on each foot (below the
lateral malleolus), and 1 at lumbar level (L5).
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Figure 3. Inertial measurement unit placements. 1: Thighs (side, upper third); 2: fibulas (upper third); 3: foot (below lateral malleolus); 4: Lumbar (L5
level).

Video Recording and Window Labeling

During each visit, and during trials designed to induce freezing
episodes, patients will be recorded using 14 synchronized Miqus
M3 cameras (Qualisys). These cameras will record at a
resolution of 1824 × 1088 pixels with a frequency of 25 Hz.
FoG episodes will be identified from the videos by 2 movement
disorders specialists (FL and SD) independently using QTM
2020 software (Qualisys). The start of a freezing episode is
defined as “the moment when the stepping foot does not leave
the ground despite a clear intention to step,” and the end is
defined as “the moment when the stepping foot begins or
resumes an effective step” [32]. In cases where there is
disagreement about the presence of a FoG episode, the
specialists will discuss and reach a consensus. Following the
methodology of Pardoel et al [32], the data timeline will be
segmented into 2-second windows with a 0.4-second shift
between windows (80% overlap). Windows will be labeled as
“FoG window” when the entire window corresponds to a period
of FoG. Windows not meeting this criterion, either during
periods without FoG or during transitions between FoG episodes
and non-FoG periods, will be labeled as “no-FoG window.”
The relative duration of FoG will be assessed by calculating the
ratio of FoG windows to the total number of windows. This
ratio provides a measure of the freezing time while accounting
for the window labeling method used. To ensure comparability
with other studies and to mitigate the effect of varying labeling
methods across research [32,38], we will also calculate the total
number of FoG episodes and the cumulative freezing time based
on onset and end events, categorized by task type, session, and

patient. This approach will facilitate meaningful comparisons
with existing literature on FoG detection methodologies.

Data Management
All data are securely stored in a dedicated folder on a local
server with restricted access limited to the research team.
Patient’s clinical information (such as age, sex, laterality of
symptoms, duration of PD, lateralization of symptom onset,
daily dose of levodopa equivalent, FoGQ score, Hoehn and
Yahr Scale rating, Schwab and England Scale assessment, and
MDS-UPDRS III score) along with study results (videos and
IMU data) are collected and controlled by the University
Hospital of Rennes. A database containing video data is
duplicated for each expert responsible for labeling FoG episodes.
Time annotations will be exported as events in C3D files along
with IMU data before the windowing process, contributing to
a final database used for subsequent data analysis. This
structured approach ensures the integrity and confidentiality of
patient data while facilitating precise event annotation and
thorough analysis of collected data.

Data Analysis

Features Extractions
Each window of data will undergo normalization to achieve
zero mean and unit variance. Our study distinguishes itself
through an exhaustive exploration of features aimed at
identifying FoG episodes. From each window, signal features
will be extracted from both the time and frequency domains. A
comprehensive array of features will be included, such as the
number, duration, and length of acceleration or angular velocity
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reversals, kurtosis, and skewness [14]. Furthermore, we will
incorporate metrics such as the magnitude of mean and SD of
signals, as well as specific metrics related to smoothness such
as spectral arc length measure [39] and the freezing ratio [40].
Nonlinear modeling features, such as sample entropy or
Lyapunov exponent, which quantify gait regularity and
complexity, will also be used [41]. Furthermore, measures of
inter- and intralimb coordination will be integrated to highlight
specific limb dynamics during FoG episodes. Feature selection
will be conducted using Relief-F, chosen for its suitability in
our application over methods such as minimum redundancy
maximum relevance ranking [20]. This approach ensures that
the selected features are highly relevant to distinguishing FoG

episodes, thereby optimizing the accuracy and effectiveness of
our analysis.

Model Training
The top-ranked features identified through Relief-F will be used
in a decision tree (DT) model for classifying windows of data.
The DT model will be tested using 5 and 10 decision splits and
with various sets of top-ranked features ranging from 5 to 20.
The performance of the DT model will be evaluated using
metrics such as accuracy, sensitivity, specificity, PPV, and NPV.
The model’s performance will be determined based on the
classification of each window as true positive (TP), true negative
(TN), false positive (FP), or false negative (FN), comparing the
model’s classifications with the experts’ identification of FoG
episodes on video recordings (Figure 4).

Figure 4. Segmentation on true negatives (TNs), true positives (TPs), false negatives (FNs), and false positives (FPs) for each second according to the
experts and the model.

The agreement between the model and experts regarding FoG
or non-FoG periods will be assessed as follows:

• TP: A FoG period correctly identified by both the experts
and the model

• TN: A non-FoG period correctly identified by both the
experts and the model

• FP: A FoG period incorrectly identified by the model but
not by the experts

• FN: A FoG period incorrectly identified by the experts but
not by the model

Performance scores will be calculated using the following
equations:

Model Validation
The model validation will use the leave-one-subject-out (LOSO)
cross-validation technique to assess its performance across

participants and accommodate the considerable variability
between participants. While some studies [20,42] advocate for
the leave-one-freezer-out (LOFO) cross-validation technique
to avoid overrepresentation of patients without FoG in training
and validation sets, our study focuses on participants who have
experienced at least 1 episode of FoG during their initial visit.
Consequently, each patient will have FoG episodes, making the
LOSO approach more suitable for our validation process.

Statistical Analysis
Clinical data of the participants will be presented as means (SD)
or medians with IQRs for continuous data, depending on their
distribution. Categorical data will be reported as counts (with
percentages within parentheses).

Primary Outcome
The main objective of our study is to identify the most relevant
features and locations of wearable sensors for detecting FoG
episodes. The Relief-F technique will rank features extracted
from data collected by all sensor segments. The top-ranked
features across all subjects will indicate the most critical sensors
for detecting FoG episodes, and these features will be used in
model training and validation. The LOSO method will be used
for validation, and accuracy will be computed for each subject.
Furthermore, Relief-F analysis will be conducted individually
for each subject to potentially reveal redundancy in the
top-ranked features across subjects. Feature extraction, selection,
model training, and validation will be implemented using Python
3.0 (PythonLabs) scripts.
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Secondary Outcomes
We will investigate the differences in model performance across
various conditions to propose recommendations for interpreting
the model. Accuracy, sensitivity, and specificity will be
evaluated using a mixed-effects model with fixed effects for
patients and random effects for the type of condition (ST, DCT,
and DMT) and medication state (“on” and “off”).

Results

The study is currently in the data collection phase, with
recruitment starting in February 2024. Once all data have been
gathered, data analysis will commence. As of August 2024, 3
patients have been recruited. We anticipate publishing the results
by the end of 2025. The results of this study will be presented
at scientific events and published in scientific journals.

Discussion

Strengths and Limitations of This Study
The aim of this study is to assess the accuracy of the most
effective combination of wearable sensors in detecting FoG in
patients with PD. This setup has been developed following an
extensive literature review and clinical evaluation of patients.

To date, consensus on sensor placement remains elusive,
necessitating a detailed examination of individual and collective
placements [15]. The model used will incorporate a broad array
of features from both temporal and frequency domains
documented in the literature to maximize accuracy. Moreover,
this model will undergo testing on a sizable cohort of patients
(n=18), each completing 18 passages on a designated
freezing-inducing path, yielding a comprehensive data set.
Furthermore, the model will be evaluated on a path known to
provoke FoG under different medical (“on” and “off” levodopa
medication) and clinical (ST, DMT, and DCT) conditions [32].
This evaluation aims to simulate various walking tasks akin to
daily life and assess their potential to induce or alleviate FoG,
particularly in dual-task scenarios. Several datasets are available,
some with restricted accessibility. Multimedia Appendix 1
outlines several pertinent and comparable datasets. Our dataset’s
strength lies in its incorporation of multiple sensor placements
across varied medication states and task complexities, including
cognitive dual tasks. This dataset will be openly accessible or
supplied on request, fostering research and collaboration in the
field.

One limitation of this study is its reliance on a controlled
environment. Despite efforts to simulate ecological tasks that

mimic everyday challenges and tend to provoke gait freezes
(FoG) under dual-task conditions, it is crucial to acknowledge
that the study is conducted under controlled conditions. For
future research, conducting tests in real-life settings over
prolonged periods would be advantageous. This approach could
facilitate the accumulation of larger datasets across diverse
situations, thereby enhancing our understanding of FoG in more
complex real-world scenarios.

Perspectives
The miniaturization of sensors is unlocking new opportunities
for monitoring patients with PD, particularly in detecting
episodes of FoG. Extending this capability across all medical
and clinical settings would offer a more comprehensive
understanding of this phenomenon, which remains incompletely
understood. Moreover, it would facilitate dependable and
objective monitoring of symptom progression, influenced by
treatments and the disease’s natural trajectory. This could serve
as an objective tool for patient monitoring, assessing both the
severity and frequency of FoG.

Objective evaluation is crucial for identifying suitable medical
and nonmedical treatments, including rehabilitation or deep
brain stimulation [43]. Research has underscored the
significance of personalized treatment tailored to individual
patient needs and circumstances [44]. Real-time detection
facilitates the integration of FoG episode identification with
external stimuli, such as sensory, auditory, or visual cues,
offering a significant opportunity to mitigate FoG episodes [45].

Conclusions
This study aims to enhance the detection of FoG in patients
with PD through the use of multiple wearable sensors. By
evaluating various sensor placements and the accuracy of
detection algorithms, the study aims to determine the most
effective combination of wearable sensors for detecting FoG
episodes. Despite the study being conducted in a controlled
laboratory environment rather than real-life settings, the findings
are expected to significantly advance understanding and
monitoring of FoG. The anticipated results will provide crucial
insights into optimal sensor configurations and detection
methodologies, ultimately supporting the development of more
precise and personalized treatment strategies for patients with
PD. Publication of these results by the end of 2025 will
contribute valuable data to ongoing efforts aimed at improving
patient care and enhancing quality of life for individuals affected
by PD.
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