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Abstract

Background: Type 2 diabetes (T2D) is a leading cause of premature morbidity and mortality globally and affects more than
100 million people in the world’s most populous country, India. Nutrition is a critical and evidence-based component of effective
blood glucose control and most dietary advice emphasizes carbohydrate and calorie reduction. Emerging global evidence
demonstrates marked interindividual differences in postprandial glucose response (PPGR) although no such data exists in India
and previous studies have primarily evaluated PPGR variation in individuals without diabetes.

Objective: This prospective cohort study seeks to characterize the PPGR variability among individuals with diabetes living in
India and to identify factors associated with these differences.

Methods: Adults with T2D and a hemoglobin A1c of ≥7 are being enrolled from 14 sites around India. Participants wear a
continuous glucose monitor, eat a series of standardized meals, and record all free-living foods, activities, and medication use
for a 14-day period. The study’s primary outcome is PPGR, calculated as the incremental area under the curve 2 hours after each
logged meal.

Results: Data collection commenced in May 2022, and the results will be ready for publication by September 2025. Results
from our study will generate data to facilitate the creation of machine learning models to predict individual PPGR responses and
to facilitate the prescription of personalized diets for individuals with T2D.

Conclusions: This study will provide the first large scale examination variability in blood glucose responses to food in India
and will be among the first to estimate PPGR variability for individuals with T2D in any jurisdiction.

Trial Registration: Clinical Trials Registry-India CTRI/2022/02/040619; https://tinyurl.com/mrywf6bf

International Registered Report Identifier (IRRID): DERR1-10.2196/59308

(JMIR Res Protoc 2025;14:e59308) doi: 10.2196/59308
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Introduction

Type 2 diabetes mellitus (T2D) is the leading cause of chronic
kidney disease, end-stage renal disease, blindness, and

nontraumatic amputation; it also substantially increases the risk
of myocardial infarction, stroke, and heart failure [1]. Its
prevalence is particularly high in India, which is now the most
populous country in the world. As of 2023, more than 100
million people living in India have diabetes, representing more
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than 11% of the population and an additional 136 million have
prediabetes [2]. These numbers are anticipated to continue to
grow rapidly. The lifetime risk of T2D among 20-year-olds who
are obese and living in India is estimated to be more than 86%
[3]. The rising prevalence of this condition in India is believed
to be the result of changing diets, increasingly sedentary
occupations, lower levels of physical activity in the context of
urbanization, and rapidly increasing rates of obesity [4].

These trends are particularly concerning because of important
differences between the presentation and consequences in T2D
among individuals of South Asian origin compared with other
racial and ethnic groups. These differences, which often referred
to as the “Indian Phenotype” or “South Asian Phenotype” [5-7],
are characterized by the onset of T2D at a younger age and
substantially lower BMI than people of other races and
ethnicities [8-10]. Individuals of Indian origin have higher levels
of insulin resistance (and for longer periods of time) and
premature beta-cell failure [7]. They are more likely to develop
the fatal complications of T2D, most notably heart disease [7].
These features are thought to result from a mix of lifestyle,
epigenetics, and fetal programming factors [7,11,12].

The fundamental goal of diabetes management is to maintain
near-normal glucose levels. A variety of self-management
behaviors, in particular adherence to diet and regular exercise,
are central to this goal. An extensive body of evidence
demonstrates that aiding patients with T2D with
self-management behaviors is associated with improvements
in a wide range of outcomes including knowledge, self-care
behaviors, weight, quality of life, hemoglobin A1c (HbA1c),
all-cause mortality, and health care costs [13,14].

Guidelines recommend that nutritional guidance be personalized
based on nutritional status, lifestyle, and metabolic goals [15].
Despite this, most dietary advice for individuals with T2D
remains generic emphasizing reductions in calories and
minimization of carbohydrates [16]. However, there are marked
interindividual responses in postprandial glucose response
(PPGR) [17]. A study conducted in Israel found substantial
PPGR variability to standardized meals for individuals without
diabetes [18]. Similar data has been generated in the United
Kingdom, the United States, and China [19-21].

There have been no studies characterizing food responsiveness
among individuals living in India and virtually no published
data, from any judication, in the variability in PPGR for
individuals with T2D [22]. Given the unique Indian diabetes
phenotype and differences between Indian and western diets,
in specific much higher rates of carbohydrate consumption
overall [23] and the centrality of white rice and refined wheat
[24], there are very likely to be differences in blood glucose
responses to food and exercise in India than observed elsewhere,
just as there have been in Indians’ responses to diabetes
medications [25]. Accordingly, the goal of this study is to
characterize and identify factors associated the variability in
PPGR among individuals with T2D in India.

Methods

This prospective cohort study seeks to evaluate the relationship
between PPGR and self-management activities including diet,
exercise, and other daily routines, for individuals with T2D in
India (Figure 1).

Figure 1. Overall study design.

Study Setting
This trial is being conducted at 14 outpatient clinics in
geographically distinct regions across India with population
sizes ranging from 1.2 to 34 million. Sites were identified and
managed by IQVIA, a multinational contract research

organization, and were included if they specialized in the care
of individuals with diabetes, had an established research
infrastructure for the conduct of diabetes-related studies
including a site principal investigator who is a diabetologist
(with clinical training in endocrinology or internal medicine),
a local ethics committee to provide study oversight, and a
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sufficient volume of potentially eligible patients. Study
enrollment began in May 2022.

Eligible Participants and Enrollment
The study population consists of adults with diabetes and
suboptimal disease control, classified as HbA1c ≥7. Complete
inclusion and exclusion criteria are summarized in Textbox 1.

Textbox 1. Eligibility criteria required for participants to be enrolled in the study.

Inclusion criteria

• Age ≥ 18 and <75 years.

• Physician-diagnosed type 2 diabetes treated with ≥1 oral hypoglycemic agents

• Hemoglobin A1c≥ 7.0% recorded within the past 30 days.

• Mobile phone capable of running protocol-specified apps.

• Functional English literacy.

Exclusion criteria

• Unable or unwilling to provide informed consent or comply with the study-specified procedures.

• Current use of prandial insulin including a continuous insulin infusion pump.

• Currently pregnant or planning to become pregnant.

• Estimated life expectancy of ≤12 months.

• Active cancer.

• Myocardial infarction or stroke in the last 6 months.

• Receiving or planned to initiate dialysis for end-stage renal disease.

• Receiving oral or intravenous steroids.

• Any contraindication to using a continuous glucose monitor.

Potentially eligible patients are identified from clinic records
and are invited to attend an in-person screening visit at which
time eligibility is confirmed and written informed consent
obtained. Consenting patients are asked to provide
sociodemographic and medical information (specifically, age,
sex, predominant diet, health conditions, family history, and
current medications) and to complete baseline surveys including
the World Health Organization’s STEPwise Approach to
Non-Communicable Disease Risk Factor Surveillance (STEPS)
survey [26], World Health Organization-Five Well-Being Index
(WHO-5) [27]. Diabetes Distress Scale [28], Wilson Adherence
Scale [29], and the Pittsburgh Sleep Quality Index [30].

Biometric data including blood pressure, heart rate, weight,
height, and body measurements at the upper arm, thigh, calf,
waist, and hips, are collected by study coordinators at each site.
Finally, enrolled participants provide blood samples including
a complete blood count, HbA1c, blood electrolytes, creatinine,
cholesterol, as well as urinalysis.

After completing baseline assessments, participants are fitted
with an Abbott Freestyle Libre continuous glucose monitors
(CGM) sensor on their upper, nondominant arm and are
provided with a Xiaomi Mi Band Smart Wristband (heart rate
monitor) and a Roche Accu-Chek glucometer with testing
supplies, and dietary supplements to be consumed with their
standardized meals (refer to Follow-up Procedures section).

Study-specific apps are downloaded on to the participants’
smartphones to allow them to log dietary intake and synchronize
their continuous glucose and heart rate monitors. As a back-up,
participants are given a paper dietary logbook and a Freestyle
Libre CGM reader with which to collect protocol-specified data.

Follow-Up Procedures
Participants are followed for 14 days. They are instructed to
wear the CGM and heart rate monitor. The heart rate monitor
is to be always worn, including during sleep, and only removed
for recharging. Participants are also asked to check their
capillary glucose on days 2 through 6 before breakfast and
dinner.

Participants log their full dietary intake using the study app or
logbook over the 14-day study period, including all standardized
test meals and free-living foods (including snacks), beverages
(including water), and medications. Participants also log all
exercise.

Participants are required to consume protocol-specified meals
and to perform light activity, as described in Table 1. The
standardized meals consist of vegetarian breakfast foods which
participants are to prepare in their homes.

The meals vary in their proportion of carbohydrate, fiber,
protein, and fat (refer to Table 2).
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Table 1. Meal schedule during the at-home study period.

Meal typeDay and timing

1

FastingBreakfast

As desiredLunch

As desiredDinner

2

Perceived healthy mealBreakfast

Post meal exerciseLunch

Typical mixed protein with dinnerDinner

3

Fiber supplement with standardized test mealBreakfast

Premeal exerciseLunch

Alternative mixed protein with dinnerDinner

4

Fiber supplement before standardized test mealBreakfast

As desiredLunch

As desiredDinner

5

Protein supplement with standardized test mealBreakfast

As desiredLunch

Alternative mixed protein with dinnerDinner

6

Protein supplement before standardized test mealBreakfast

Added fiber with lunchLunch

Alternative mixed protein with added proteinDinner

7

Regular breakfastBreakfast

Added fruitLunch

Cooled carbohydrateDinner

8

Regular breakfast with added proteinBreakfast

Added fruit with proteinLunch

Regular carbohydrateDinner

9

Protein followed by carbohydrateBreakfast

Water 30 minutes before lunchLunch

As desiredDinner

10

Standardized test mealBreakfast

As desired including dessertLunch

Protein followed by carbohydrates and vegetablesDinner

11

Standardized test meal with postmeal exerciseBreakfast
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Meal typeDay and timing

As desired including desert and cinnamonLunch

Vegetables followed by protein then carbohydratesDinner

12

Standardized test meal with postmeal exerciseBreakfast

As desiredLunch

As desired finishing eating by 8 PMDinner

13

Water before late breakfast + postmeal exerciseBreakfast

Low glycemic index lunchLunch

Low glycemic index dinner + finish dinner by 8 PM + exercise after mealDinner

14

Water before late breakfast + exercise after mealBreakfast

Low glycemic index lunch + exercise after mealLunch

Low glycemic index dinner + finish dinner by 8 PM + exercise after mealDinner

Table 2. Nutritional composition of standardized test meals.

Meal typeMeal characteristics

Added proteinAdded fiberCarbohydrate

2 aloo parathas with curd + protein supple-
ment

2 aloo parathas with curd + fiber supple-
ment

2 aloo parathas with curdExample meal

594.4506.4474.4Energy (kcal)

62.964.161.5Carbohydrate (g)

14.612.512.5Fat (g)

31.97.87.7Protein (g)

8.321.98.3Fiber (g)

42.350.651.9Carbohydrate (% energy)

22.122.323.8Fat (% energy)

21.46.056.46Protein (% energy)

Participants are instructed to fast for a minimum of 8 hours
before and 3 hours after consuming the standardized breakfast
meal; during these fasting periods, limit exercise and drink only
still (not sparkling) water, tea, or coffee in moderation; and eat
the meal, in its entirety, within 20 minutes. After completing
the postmeal fasting period on standardized test meal days,
participants may consume other foods as they normally would
unless there are other meal modifications specified by the
protocol later the same day.

On other days, participants are asked to consume normal foods
with protocol-specified constraints. For example, on different
days, participants vary the types of mixed protein (eg, different
types of lentils with or without added protein), ordering with
the type of foods consumed (eg, protein before carbohydrate vs
protein with carbohydrate), consume water before their meal,
go for a walk after eating, or eat what they perceive to be a
healthy meal. Where applicable, participants are given several
options as to which of their usual foods are acceptable for each
protocol specified food modification.

During the follow-up period, participants are contacted by phone
and text messages to ensure protocol compliance. For
participants using the study-specific smartphone apps, a web
dashboard is used to monitor the completeness of dietary logging
and CGM scanning, with outreach to participants initiated when
missing data is detected. Participants using paper logs and a
CGM reader, and therefore for whom no dashboard information
is available, are contacted daily to ask about protocol
compliance. Ad hoc midstudy visits are used to further ensure
accurate data collection. If the outreach identifies a problem
with a CGM (ie, it was damaged, fell off, or malfunctioned),
study staff provide a replacement within 24 hours during which
time participants are asked to pause their meal protocol and
restart once their CGM has been reapplied and recalibrated. If
a test meal was not consumed as intended, participants are
provided with the option to repeat the meal.

On day 15, participants are asked to remove their CGM. If need
be, study staff help record or correct missing or inaccurate food,
activity, and medication data.
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Statistical Analysis Plan
The study’s primary outcome is PPGR. Following the Wolever
and Jenkins method [31], as adapted by Zeevi et al [18],
Mendes-Soares et al [20], and Berry et al [32], logged meal
times and continuous glucose measurements will be used to
calculate the incremental area under the curve. Before
conducting analyses, meals logged less than 30 minutes apart
will be merged and meals logged within 90 minutes of other
meals will be removed. Meals that are very small (<15 g and
<70 calories), very large (>1 kg), with implausibly low PPGR
values (ie, a PPGR < 5 mg/dL·h after consuming ≥ 40 g of
carbohydrates), that are incompletely logged, and which are
consumed in the first and last 12 hours of the CGM connection
will also be removed. To reduce noise, the median of all glucose
values from the 30-minute period before the meal will be taken
as the initial glucose level, above which the incremental area
will be calculated. Meals that had incomplete glucose
measurements in the time window of 30 minutes before and 2
hours after the logged mealtime will be filtered out.

Descriptive statistics will be used to plot the range of PPGRs
responses to standardized test meals as well as the correlation
between PPGR and the nutritional composition of the logged
meals (ie, carbohydrates, fat, and protein).

A machine learning predictor will be developed based on
stochastic gradient boosting regression (XGBoost, version 2.2.1;
The XG Boost Contributors) [33] using the XGBRegressor
class. PPGR will be predicted as the sum of predictions from
thousands of decision trees. Trees will be inferred sequentially,
with each trained on the residual of all previous trees. The
features incorporated in each tree are selected by an inference
procedure from features representing meal content (ie, calorie,
protein, carbohydrate, and fiber content), meal timing, baseline
demographics (ie, age, sex, predominant diet, health conditions,
family history, and current medications), baseline survey results
(ie, WHO STEPS, WHO-5, Diabetes Distress School, Wilson
Adherence Scale, and Pittsburgh Sleep Quality), baseline
biometric values (ie, blood pressure, heart rate, weight, height,
and body measurements at the upper arm, thigh, calf, waist, and
hips), baseline laboratory values (complete blood count, HbA1c,
blood electrolytes, creatinine, cholesterol, and urinalysis), as
well as CGM, heart rate, and activity data.

Performance will be assessed by holding out 30% of the sample
and using 5-fold cross-validation in which cross-validation
participants are divided into 5 groups, the model will be trained
on the other 4 parts. Random datasets of the same size as the
original will be sampled with replacement from the original
dataset, and the entire training and validation process will be
repeated. The performance will be measured by the ability to
accurately predict meals reported by the held-out participants.
Prediction results will be aggregated, and Pearson product
moment correlation with the measured PPGRs will be reported.
The SE for the calculated performance will be assessed using
at least a thousand iterations of bootstrapping until the errors
stabilize. Model discrimination will be assessed using a binary
cut-point for PPGR, set at the 50th percentile of all observed
PPGR values, plotting a receiver operating characteristic curve
(ROC) and then calculating the area under the ROC.

Sample Size Considerations
A total of 1050 individuals will be targeted for recruitment.
Assuming a 5% loss to follow-up, this corresponds to 1000
evaluable individuals at the end of the study. The study has been
designed to predict postprandial glucose responses based on
individual characteristics and 1000 participants followed for
14-days will result more than 4 million glucose readings
(assuming glucose readings from the CGMs every 5 minutes)
and 42,000 meals (assuming 3 meals per participant per day).
This volume of data will also provide more than 80% power to

detect correlations of a magnitude of r=0.13 (R2=0.02) with
P<.005. We will also be sufficiently powered to detect effects

of r=0.17 (R2=0.03, ie, explaining 2.7% of interindividual
variation) with P<.001, that is, accounting for 5000 independent
hypothesis tests.

Ethical Considerations
This study was approved by the following ethics committees at
all institutions enrolling patients: SShrey Hospital Institutional
Ethics Committee (DHINDIA_2021_01A04), Inamdar
Multispecialty Hospital Ethics Committee
(DHINDIA_2021_01A04), Neelima Hospitals Institutional
Ethics Committee (DHINDIA_2021_01A04), Jaipur National
University Institutional Ethics Committee
(JNUIMSRC/IEC/2022/06), Maharaja Agrasen Hospital
Institutional Ethics Committee EP/F-174), Ganesh Shankar
Vidyarthi Memorial Medical College Ethics Committee
(EC/72/March/2022), Mar Augustine Golden Jubilee Hospital
Institutional Ethics Committee (DHINDIA_2021_01A04),
Medisys Clinisearch Ethical Review Board, Dayanand Medical
College and Hospital Drug Trials Ethics Committee
(DMCH/DTEC/2020/1242), Chennai Meenakshi Multispecialty
Hospital Ethics Committee (CMMHEC/22/02), Sparsh Hospital
Institutional Ethics Committee (ZZA78309), Medical College
of Kolkata Institutional Ethics Committee
(MC/KOL/IEC/SPON/1296/03/22), Ethics Committee
Downtown Hospital, and CHL-Hospitals Integrity Ethics
Committee.

Results

Data collection commenced in May 2022, and the results will
be ready for publication by October 2025. Results from our
study will generate data to facilitate the creation of machine
learning models to predict individual PPGR responses and to
facilitate the prescription of personalized diets for individuals
with T2D.

Discussion

Study Implications
This study will provide the first large scale examination of
variability in blood glucose responses to food in India and will
be among the first to estimate PPGR variability for individuals
with T2D in any jurisdiction. We hypothesize that there will be
substantial interindividual variability in PPGR and that, based
on the data collected from this study, machine learning models
will be able to accurately predict individual PPGR responses.
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This will facilitate the prescription of truly personalized diets
for individuals with T2D.

These results will be particularly important in the context of the
rapidly rising prevalence of T2D in India [34]. Along with
medications and physical activity, diet is a key tenant of
effective blood glucose control [15]. Like in other jurisdictions,
guidelines call for individualization of meal planning, which is
sometimes referred to as “Medical Nutritional Therapy.” Despite
this, personalization of dietary plans are generally based upon
broad constructs like age, activity level, health status, and
preferences, and, for all patients, tend to emphasize overall
calorie reductions and minimization of carbohydrate [16].
especially added sugars and refined grains, in favor of the
consumption of nonstarchy vegetables and foods that are high
in protein [35].

However, emerging data demonstrates that there are marked
interindividual responses to food [17], attributed to differences
in physical activity [36], gut microbiome [18,19,37], and
genetics [38], including in variations in skeletal glucose
transporters related to insulin resistance [39]. For example, a
study conducted in the United States among nondiabetic
individuals with a mean BMI of 27 found PPGR to a
standardized meal of bagel and cream cheese ranged from 6 to
94 mg/dL·h [20]. A similar study conducted in Israel enrolled
nondiabetic individuals of whom 3-quarters had a BMI ≥ 25
and found mean PPGR to bread and butter of 44 mg/dL·h but
the bottom decile had responses of ≤ 15 mg/dL·h and the top
decile has responses ≥ 79 mg/dL·h [18]. Similar data have been
generated for individual without diabetes in the United Kingdom
and the United States [19,20], and for individuals with type 1
diabetes in Israel [40].

There is exceptionally limited data for variability in PPGR for
individuals with T2D in the peer-reviewed although it is highly
likely that such variability exists [22]. The primary goal of our
study is to fill this void and to generate an India-specific
machine-learning models on the basis of which PPGR can be
predicted with high accuracy for T2D. Similar models have
been built in other jurisdictions. For example, a machine learning
algorithm trained on CGM data, dietary, activity,
anthropometrics, and gut microbiota for nondiabetic individuals
in Israel was much more accurate at predicting PPGR than
generic models based on the carbohydrate content or the amount
of calories in a meal [18]. A separate US-based study had similar
findings [20].

Among individuals with diabetes, a study in the Netherlands
that included a small number of individuals with T2D along
with individuals with prediabetes and normal glucose
metabolism, a machine learning model based on CGM data was
highly accurate in predicting future glucose values but this study
did not specifically evaluate the ability to predict PPGR [41].
A US study of 1000 patients of whom 1-quarter had T2D found
that a machine learning model trained on CGM, HRM data and
food logs was highly accurate at predicting PPGR but this study
has, to our knowledge, only been published in abstract form
[22]. These studies have all relied on CGM data to make their
predictions. While these devices are increasingly used, practice
guidelines do not recommend their long-term use for most
individuals with T2D [42]. Accordingly, a key goal of our study
will be to explore the ability to predict PPGR response without
reliance on CGM data or with very limited blood glucose data
from patients.

Limitations
There are several limitations to our approach. Our approach is
purposely pragmatic and is intended to simulate real-world
circumstances for individuals with T2D living in India. Similar
to studies conducted in other jurisdictions, we rely on
self-reported dietary and activity information. And, while we
are auditing patient logs on an ongoing basis, there may
nevertheless be issues with protocol adherence that may
undermine the accuracy of the data we collect. Participants are
being recruited from clinics, predominantly caring for
individuals with diabetes, are required to have functional English
literacy and a cellphone capable of running study specific
devices. Thus, our results may not be fully generalizable to
patients who do not fulfill these criteria. Finally, some of the
enrollment has overlapped with the COVID-19 pandemic, which
may have influenced access to health care, dietary practices,
and glucose control for individuals with T2D.

Conclusion
In conclusion, this study will provide the first large scale
examination variability in blood glucose responses to food in
India and will be among the first to estimate PPGR variability
for individuals with T2D in any jurisdiction. Results from our
study will generate data to facilitate the creation of machine
learning models to predict individual PPGR responses and to
ultimately facilitate the prescription of truly personalized diets
for individuals with T2D.
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