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Abstract

Background: Amyotrophic lateral sclerosis (ALS) leads to rapid physiological and functional decline before causing untimely
death. Current best-practice approaches to interdisciplinary care are unable to provide adequate monitoring of patients’ health.
Passive in-home sensor systems enable 24×7 health monitoring. Combining sensor data with outcomes extracted from the electronic
health record (EHR) through a supervised machine learning algorithm may enable health care providers to predict and ultimately
slow decline among people living with ALS.

Objective: This study aims to describe a federated approach to assimilating sensor and EHR data in a machine learning algorithm
to predict decline among people living with ALS.

Methods: Sensor systems have been continuously deployed in the homes of 4 participants for up to 330 days. Sensors include
bed, gait, and motion sensors. Sensor data are subjected to a multidimensional streaming clustering algorithm to detect changes
in health status. Specific health outcomes are identified in the EHR and extracted via the REDCap (Research Electronic Data
Capture; Vanderbilt University) Fast Healthcare Interoperability Resource directly into a secure database.

Results: As of this writing (fall 2024), machine learning algorithms are currently in development to predict those health outcomes
from sensor-detected changes in health status. This methodology paper presents preliminary results from one participant as a
proof of concept. The participant experienced several notable changes in activity, fluctuations in heart rate and respiration rate,
and reductions in gait speed. Data collection will continue through 2025 with a growing sample.

Conclusions: The system described in this paper enables tracking the health status of people living with ALS at unprecedented
levels of granularity. Combined with tightly integrated EHR data, we anticipate building predictive models that can identify
opportunities for health care services before adverse events occur. We anticipate that this system will improve and extend the
lives of people living with ALS.
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Introduction

Amyotrophic lateral sclerosis (ALS) is a rapidly progressing
neurodegenerative disorder that usually leads to death within 3
years of symptom onset and within 2 years from diagnosis [1].
The sequence and rate of ALS progression can vary widely
depending on the phenotype, age at onset, and diagnostic delay
[2,3]. Pharmacological developments (eg, Riluzole and
Radicava) can slow disease progression, but the result is always
premature death, typically due to respiratory failure, pneumonia,
or heart failure [4,5].

Treatment in a specialized, multidisciplinary ALS clinic is
among the strongest predictors of quality of life and prolonged
survival among people with ALS [6]. In the United States, these
clinics take the form of ALS Association Certified Treatment
Centers of Excellence, which, by definition, must include a
multidisciplinary team with treatment standards based on the
American Academy of Neurology Practice Parameters [6,7].
Even in this best-case treatment setting, though, weeks or
months may pass between clinic visits. Rapid physiological and
functional declines between visits mean that a person with ALS
can be hospitalized or deceased before the care team is aware
of their change in status. The time between clinic visits
represents a critical gap in the multidisciplinary care of people
with ALS. A reliable, noninvasive system for passively detecting
physiological and functional decline between visits would give
the multidisciplinary team unprecedented ability to predict
outcomes and, more importantly, make near–real-time treatment
recommendations to counteract disease progression, prolong
independence, and maintain quality of life. Rates of respiratory
decline and lower extremity functional decline, in particular,
are reliable prognostic indicators for ALS survival time [1]. In
addition to pharmacological options, targeted nonpharmacologic
interventions can reduce perceived fatigue, improve manual
dexterity, prevent falls, promote myriad cognitive improvements,
and preserve the overall quality of life among those living with
ALS [8]. These interventions, enabled by early detection of
decline, are most effective when delivered in the context of
multidisciplinary programs, resulting in longer survival and
higher quality of life [6,9].

To monitor the decline, members of the research team have
developed a passive, in-home, sensor-based system for
monitoring physiological biomarkers and functional status
through a combination of hydraulic bed sensors, motion sensors,
and privacy-preserving depth sensors [10]. The system can
reliably capture pulse, respiration rate, bed restlessness, room
activity, gait speed, stride length, and falls. It has been deployed
in more than 300 senior housing units and private homes
throughout the midwestern United States since 2005. The system
was developed and tested in two phases with support from the
National Institutes of Health (National Institute of Nursing
Research 1R21NR011197-01, Rantz, principal investigator).
The first phase was retrospective [11-13], reviewing 3 years of
significant health events from previous study participants.

Parameters deemed important for an aging-in-place population
include increasing or decreasing bed restlessness, pulse,
respiration, time in bed, increasing bathroom activity, and
decreasing general activity and time away from home
[10,14-16]. Previous iterations of the system have been
described extensively elsewhere [17,18]. The current iteration
is a closed-source implementation purchased from Foresite
Healthcare and maintained by the research team.

Our previous work makes clear that it is possible to detect and
track very early signs of health changes using passive in-home
sensing. In some cases, the onset of clinical declines may be
detected before patients are aware of changes [18-20]. The
system captures a variety of important biomarkers and functional
data, including the key variables for predicting decline among
people with ALS. The purpose of this work is to adapt the
existing sensor system to predict physiological and functional
decline in people living with ALS. This approach relies on a
myriad of multimodal data, including robust sensor signals and
structured electronic health record (EHR) data from distinct
platforms. Here, we describe a necessarily federated approach
to combining these distinct data types into a single dataset for
the generation of the prediction algorithm. We hypothesize that
this approach is feasible.

Methods

Design
The goal of the parent study is to adapt the existing sensor-based
alert system to facilitate early detection of physiological and
functional declines among people living with ALS. To this end,
the study considers three hypotheses: (1) the enhanced sensor
system is feasible for collecting biometric data and health
outcomes from people living with ALS; (2) enhanced sensor
system data, processed through an unsupervised machine
learning approach, may enable early detection of health status
changes among people living with ALS; and (3) changes in
health status detected by the multidimensional streaming
clustering approach can predict adverse health outcomes,
including pneumonia, hospitalization, and death among people
living with ALS.

This paper specifically addresses the methodology for hypothesis
1, testing the feasibility of the federated collection, storage, and
analysis of data from the sensor system and EHR. Data
collection is scheduled to continue through December 2025,
and interim findings are reported in the Results section below.
Full results of this process will be reported elsewhere upon
completion of the study.

Recruitment
Participants are recruited from the ALS Association Certified
Treatment Center of Excellence at University of Missouri Health
Care. Inclusion criteria are age 18 years or older, a clinical
diagnosis of ALS by a qualified neurologist as documented in
the EHR, home zip code within 100 miles of the clinic, and
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either the presence of a live-in caregiver (eg, spouse or adult
child) or a Montreal Cognitive Assessment (MoCA) score >22.
Recruiting coordinators are allowed to omit scoring individual
MoCA items if, in their clinical judgment, response difficulties
are due to speech or motor deficits resulting from ALS, rather
than cognitive impairment. ALS genotype and phenotype,
enrollment in clinical trials, and any other treatments are not
considered inclusion or exclusion criteria.

Sensor System
We use three types of in-home sensors: hydraulic bed mats,
thermal depth sensors, and motion tags, to monitor participant
health. The sensor systems function effectively regardless of
lighting conditions, providing a noninvasive, passive way to
monitor participant health. The bed sensor is installed beneath
the participant’s mattress, where signals are best captured during
rest. It uses a hydraulic pressure transducer to gather composite
ballistocardiogram signals, which are deconvolved into
components of sleep restlessness, respiration rate, and pulse.
Ballistocardiogram signals are a mechanical measure of blood
flow produced by cardiac activity, analogous to
electrocardiogram signal patterns. The composite signals are
partitioned into their respective components using
signal-filtering algorithms. The ballistocardiogram component
is subjected to a sixth-order bandpass filter with a 0.7-10 Hz
cutoff. The respiration component is subjected to a sixth-order
low-pass filter with a 0.7 Hz cutoff. Instances of heightened
bed restlessness appear in the signal data as periods marked by
higher amplitude and increased noise.

A wall-mounted thermal depth sensor generates a series of depth
images, where each pixel corresponds to a coordinate
measurement within the scene [17]. The depth images contain
3D point-cloud coordinates of the participant during walks.
Validated algorithms extract gait parameters from these depth
images. Gait parameters for stride time, stride length, walking
speed, and participant height are derived from the point cloud
silhouettes. To overcome the limitations posed by the sensor's
field of view, which can be potentially occluded by furniture
or other objects, a centroid-based gait parameter estimation
technique has been developed. This approach permits the
collection of additional gait parameters, such as gait bounce,
trunk sway, asymmetry, and entropy across all 3 axes (X, Y,
and Z), as well as the XY diagonal with partial leg occlusion
during stride. In addition to gait parameters, a standardized
Timed Up and Go fall risk assessment score is computed from
the average in-home walking speed, as captured by the depth
sensor [17]. In the event of a detected fall, the depth sensor
performs a dual function: sending an immediate alert to
designated contacts and generating a short video clip of the fall
event for subsequent investigation or diagnosis.

Passive infrared motion sensors are deployed using the ZigBee
(Connectivity Standards Alliance) protocol, a high-level radio
communication protocol designed for low-power wireless data
transmission. The motion sensors are installed in key locations
such as the bathroom, bedroom, living room, kitchen, and front
door to capture room-level activity. Abnormal activity in these
spaces, based on the time of day or night, may suggest potential
health issues, such as a urinary tract infection or the onset of

cognitive decline. As the motion sensors detect movement in
infrared light, they are effective at identifying activity regardless
of lighting conditions. In addition to motion counts, we calculate
room activity density, represented as the number of motion
events within a unit of time for a respective sensor, providing
an overall level of activity for each room.

The system has been tested in a multiresidential environment
and can handle the presence of visitors, distinguishing them
from residents based on gait patterns [18]. In a commitment to
maintain privacy and comply with HIPAA (Health Insurance
Portability and Accountability Act) standards, all data collected
from these sensors are anonymized and time stamped with a
study-specific participant identifier, which is used to
deterministically link with sensor data. The data are stored in
a secure AWS instance.

EHR Data Integration
We leveraged the REDCap (Research Electronic Data Capture;
Vanderbilt University) Fast Healthcare Interoperability Resource
(FHIR) interface to extract participants’ most recent clinical
information directly from the backend Oracle Health EHRs
Database system of University of Missouri Health [21-23]. The
REDCap FHIR interface enables interoperability with EHR
systems, allowing real-time data extraction. By leveraging the
FHIR interface, we can extract relevant data elements, such as
laboratory results, vital signs, and clinical assessments, to
populate the registry with up-to-date information. To ensure
data accuracy and completeness, we map the extracted EHR
data to the corresponding REDCap data fields using standardized
terminologies, such as ICD-9-CM (International Classification
of Diseases, Ninth Revision, Clinical Modification), ICD-10
(International Statistical Classification of Diseases and Related
Health Problems 10th Revision), LOINC (Logical Observation
Identifiers Names and Codes), SNOMED CT (Systematized
Medical Nomenclature for Medicine–Clinical Terminology),
and RxNorm. This mapping process facilitates seamless data
integration and enables efficient data retrieval for further
analysis. Once the EHR data are extracted and mapped to
REDCap data fields, the data are stored in the REDCap database.
REDCap provides a secure and user-friendly platform for
managing research data, allowing researchers to more easily
access clinical information on people with ALS. However, the
current FHIR interface does not support real-time extraction of
unstructured notes, which were manually extracted and uploaded
into the same REDCap project, along with an additional outcome
ascertainment form for collecting monthly evaluations of the
ALS Functional Rating Scale-Revised (ALSFRS-R). All EHR
data collected into REDCap are anonymized and time stamped,
with a study-specific participant identifier created to
deterministically link with sensor data.

Data Management Plan
The extracted EHR data from REDCap and sensor data are
loaded into a single study-designated cloud storage via Secure
Shell File Transfer Protocol or Transport Layer Security 1.2
Protocol, hosted on a HIPAA-compliant, cloud-based data
enclave. Data are integrated and analyzed via the self-service
“Analytic Workbench,” hosted within the same data enclave.
Uninterrupted monitoring of accesses and activities occurs on
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the study database following established best practices that have
been implemented at the system level. Researchers’ access
details are required to be reviewed on an annual basis according
to current data use protocols. Access to the study database is
restricted to the study period, plus an additional 5 years after
the end of the study period, to facilitate subsequent requests to
validate and reuse the database for future analyses and
retrospective projects [24].

Data Analysis

Sensor Feature Engineering
We will test the preliminary efficacy of the expanded sensor
platform for detecting changes in health status among people
living with ALS. The Center for Eldercare and Rehabilitation
Technology has previously developed a multidimensional
streaming clustering algorithm that can simultaneously monitor
all of the inputs of the existing sensor platform and detect
cumulative deviations from expected patterns. The
multidimensional streaming clustering approach applies
principal components analysis and t-distributed stochastic
neighbor embedding to identify the “normal” relationships
between multiple biometric variables. The change in each
variable over time can be treated as a vector, and those vectors
can effectively be summed to produce a single vector leading
to a single point in feature space. The point represents the
patient’s cumulative health status for the day, and the vector
indicates day-to-day changes in that overall health status. When
tracked over time, these changes reveal a cluster of expected
behavior. The cluster is defined not only by its central mean
value but also by the degree of typicality of the values.
Typicality is an indicator of the consistency within the cluster,
comparable with SD. Importantly, those clusters remain
relatively stable and identifiable within a given period. Potential
alterations in function can then be identified by retrospectively
tracing the daily point trajectory as it approaches or leaves the
cluster boundary. This deviation from typicality is often a
warning sign of health decline caused by injury or illness.
Outliers indicate potential moments of acute health decline,
triggering a warning to health care staff. This same approach
will be leveraged using expanded sensor platform data
(including input from the Garmin 245 wearable sensor) to
generate and monitor clusters of baseline data for people with
ALS.

To establish the preliminary efficacy of the system, we will
follow the methods demonstrated by Wu et al [25]. We will
retrospectively compare outlier points to any adverse health
outcome indicators from the EHR to explore whether detected
outliers occurred in the period immediately preceding adverse
health outcomes. This process begins with an exploratory visual
analysis conducted by the Center for Eldercare and
Rehabilitation Technology and Clinical Teams. We can then
bin outliers into true and false positives and bin adverse health
events into caught and missed events, establishing the sensitivity
and specificity of the outliers as alerts to health status change.
These results will achieve two important goals. First, they will
answer the preliminary efficacy question, providing our first
indication of whether this system can potentially detect health
status changes in people living with ALS. We will also

investigate the associations between the outliers and ALSFRS-R
score changes and irregularities.

Early Detection Modeling
We will develop multiple state-of-the-art machine learning
models (including but not limited to regularized logistic
regression, least absolute shrinkage and selection operator,
support vector machine [26], random forest [27], gradient
boosting, and deep neural networks [28]) to achieve optimal
performance for predicting future ALSFRS-R scores. Machine
learning approaches broadly involve three phases: training,
validation, and testing. In the training phase of a supervised
learning approach, investigators define the relevant predictors
(eg, biometric sensor data and outlier warnings) and outcomes
(eg, ALSFRS-R score change, EHR indicators of pneumonia,
hospitalization, and death) of interest. The system feeds the
predictors and outcomes into a recurrent neural network first to
extract sequential features, and then each of the identified
algorithms creates a predictive model that can subsequently
predict outcomes in novel datasets. We will perform the training
phase on the first 12 months of retrospective sensor and EHR
data. When the training and validation phases involve continuous
collection of data from a single or growing dataset, the holdout
method suggests a 2:1 ratio of training to validation data.
Therefore, we will complete the validation phase with the final
6 months of prospective data collection. In the validation phase,
inputs (eg, biometric data, gait, and sleep) are fed into the model
and predicted outputs (eg, adverse health outcomes) are
compared to real-world outcomes (eg, EHR outcome indicators
of pneumonia, hospitalization, and death) [29]. Validation tests
are then conducted for both traditional sensitivity and specificity,
as well as for overfitting of the model. The validation phase
allows us to fine-tune the relative weights of each factor in the
model, improving its predictive validity. The optimal predictive
model will be selected based on testing accuracy.

Ethical Considerations
This study was approved by the University of Missouri
Institutional Review Board (project number 2084262) and the
U.S. Army Medical Research and Development Command
(USMRDC) Office of Human Research Oversight (log number
E03062.1a). All participants provided informed consent. Sensor
data are deidentified on the device before transmission to the
REDCap database. EHR data are deidentified in the REDCap
FHIR process before transmission to the REDCap database.
Participants are not compensated.

Results

User Statistics
A total of 4 participants have been recruited (Table 1). None of
the 4 participants required accommodations to complete the
MoCA. Preliminary data from participant 1 are summarized in
the preliminary analysis below (Figures 1-4). Specific dates of
diagnosis and enrollment are not provided, as they could be
combined with general geographic information to effectively
deidentify participants with a rare condition. Sensor feature
engineering and early detection modeling, based on all 4
participants, will be analyzed and reported in 2025.
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Examples of monitoring results are shown in Figures 1-4, all
scaled to the identical period from September 11 to December
29, 2023.

Figure 1 depicts motion density in the home, with the most
motion detected during a prolonged family visit in November
and considerable time spent out of the home around the
December holidays (black boxes).

Figure 2 illustrates the number of movements detected in
different rooms of the home, featuring spikes in time spent in
bed (tall yellow lines) and confirming several nights spent
outside the home in December (absence of yellow and red lines).

Figure 3 displays in-bed respiration rate (bottom purple plot)
and four techniques for estimating pulse rate: energy [30] in

brown, Hilbert transform [31] in red, k-means clustering [32]
in black, and windowed peak-to-peak deviation [33] in blue.

Figure 4 depicts, from top to bottom, average gait speed, stride
length, and stride time. Notably, reductions in average gait speed
are indicated by orange lines on December 3 and 10, 2023.
These represent system-generated alerts. The December 3, 2023,
alert reads:

Walking Speed Decrease: The average walking speed
of 91.4 cm/s observed during the current 7-day period
ending on 12/03/2023 is 3.4 cm/s (3.6%) lower than
the average walking speed of 94.8 cm/s observed
during the 7-day baseline period which ended on
11/26/2023.

Table 1. Participant characteristics.

ParticipantCharacteristics

4321

45557062Age (years)

MaleMaleMaleMaleSex

WhiteWhiteWhiteWhiteRace

562441617Days since Dxa at enrollment, n

27382031Initial ALSFRS-Rb composite score

NoNoYesNoDeceased

598648330Days of data collected, n

aDx: diagnosis.
bALSFRS-R: Amyotrophic Lateral Sclerosis Functional Rating Scale-Revised.

Figure 1. Whole home movement data density by hour from September 11 to December 29, 2023.
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Figure 2. Per-room movement detections over 24-hour periods from September 11 to December 29, 2023. Red: bathroom; yellow: bedroom; green:
front door; lavender: kitchen; purple: living room.

Figure 3. Heart rate and respiration rate by day from September 11 to December 29, 2023. Brown: energy; red: Hilbert transform; black: K-means
clustering; blue: windowed peak-to-peak deviation; purple: respiration rate.

Figure 4. Gait data by date from September 11 to December 29, 2023. Light green: stride length (cm); dark green: average speed (cm/s); yellow: stride
time (s); orange: system-generated gait alerts.

Evaluation Outcomes
As of this writing (fall 2024), sensor feature engineering is
underway, and early detection modeling will be reported upon

completion. The timeline of this work-in-progress is provided
in Figure 5.
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Figure 5. Timeline. “1” indicates the phase of work presented in this paper.

Discussion

Preliminary Results
This paper describes a federated approach to the collection of
in-home sensor data and the extraction of EHR data to create
predictive models of health status change in people living with
ALS. This approach is feasible for collecting both biometric
data and health outcomes from people living with ALS. The
sensors are nonintrusive and privacy preserving by design,
making them acceptable to participants. Similarly, the FHIR
process is nonintrusive and ensures timely, secure extraction of
records for machine learning purposes.

In the next phase of this work, we will process the data using
both supervised and unsupervised machine learning approaches
to detect health status changes and predict adverse health
outcomes, including pneumonia, hospitalization, and death
among people living with ALS. We anticipate that the results
generated by this protocol will inform subsequent clinical trials
for the prediction of ALS progression, providing guidance for
interventions and their optimal timing.

Impact
This work represents a novel application of a remote sensor
monitoring platform that has been previously validated in other
settings and populations, such as stroke and independent living.
This approach has tremendous potential in ALS, where
progression is often rapid and, until now, unpredictable. It allows
us to capture around-the-clock health state parameters, including
during the critical late stages of decline. The system may provide
important insight into physiological changes in late-stage ALS
and suggest new intervention strategies to slow the rate of
decline throughout the course of the disease.

Limitations
We anticipate several challenges during the course of this study.
The sensor data are limited to physiological measures, gait
parameters, and household-level motion activity, which may
not adequately capture the full spectrum of deficits observed in
ALS and are reported through clinical evaluations such as the
ALSFRS-R. Recruitment has been lower than projected, which
could reduce our ability to develop a reliable predictive model.
Even if the sample size meets projections, there remains concern
regarding whether the sample will be representative of the larger
population of people living with ALS due to the geographic

limitations of our single-site study. Our sampling frame results
in a sample that is disproportionately White and non-Hispanic.
This is an inherently criterion-referenced, single-subject
approach, where each patient’s biometric indicators are
evaluated only in terms of deviation from their own established
historical norms. In contrast, hypothesis 3 will involve creating
a predictive model based on historical data. A model built from
a homogeneous sample may overfit the characteristics of that
sample. Overfitting occurs when relatively few outcome events
are represented in the data, thus overweighting their contribution
to the model. As a result, the model becomes tuned to detect
cases that match the original training phase cases but cannot
adapt to novel cases that differ from the training cases. As such,
our initial model may not perform as well with people with ALS
from non-White and Hispanic backgrounds, including Black
people with ALS, who are known to receive later diagnoses and
have faster rates of decline [34]. Our validation phase will
recognize the limited diversity available in our sample.
Importantly, we will design the initial model to evolve with
additional data.

Future Work
The project described in this paper will conclude in 2025. The
authors have secured additional funding from the ALS
Association (24-AT-722) to develop models to predict
ALSFRS-R scores from sensor data and develop sensor-derived
clinical alerts. That multisite project will provide a more diverse
sampling frame to improve representation in the model. Future
plans include clinical trials to establish the efficacy and
effectiveness of this approach for delaying adverse outcomes.

Conclusions
This study will provide important new insights into the
progression of ALS at a previously impossible level of
granularity. The federated system described in this paper will
facilitate the development of predictive algorithms for illness,
falls, hospitalization, and death. This approach has the potential
to transform the clinical assessment workflow through the
implementation of decision-support predictive analytics,
enabling more proactive and personalized care strategies. By
integrating sensor-informed care for clinicians and caregivers,
we hope that this work may lay the foundation for clinical trials
to intervene ahead of adverse outcomes with the goal of
extending and improving the quality of life of people living
with ALS.
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