Published on in Vol 5, No 3 (2016): Jul-Sept

Predicting Negative Emotions Based on Mobile Phone Usage Patterns: An Exploratory Study

Predicting Negative Emotions Based on Mobile Phone Usage Patterns: An Exploratory Study

Predicting Negative Emotions Based on Mobile Phone Usage Patterns: An Exploratory Study

Journals

  1. Kim H, Lee S, Lee S, Hong S, Kang H, Kim N. Depression Prediction by Using Ecological Momentary Assessment, Actiwatch Data, and Machine Learning: Observational Study on Older Adults Living Alone. JMIR mHealth and uHealth 2019;7(10):e14149 View
  2. Luhmann M. Using Big Data to study subjective well-being. Current Opinion in Behavioral Sciences 2017;18:28 View
  3. Sarda A, Munuswamy S, Sarda S, Subramanian V. Using Passive Smartphone Sensing for Improved Risk Stratification of Patients With Depression and Diabetes: Cross-Sectional Observational Study. JMIR mHealth and uHealth 2019;7(1):e11041 View
  4. Zhang J, Pan Z, Gui C, Xue T, Lin Y, Zhu J, Cui D. Analysis on speech signal features of manic patients. Journal of Psychiatric Research 2018;98:59 View
  5. Politou E, Alepis E, Patsakis C. A survey on mobile affective computing. Computer Science Review 2017;25:79 View
  6. Hripcsak G, Albers D. High-fidelity phenotyping: richness and freedom from bias. Journal of the American Medical Informatics Association 2018;25(3):289 View
  7. Yim S, Lui L, Lee Y, Rosenblat J, Ragguett R, Park C, Subramaniapillai M, Cao B, Zhou A, Rong C, Lin K, Ho R, Coles A, Majeed A, Wong E, Phan L, Nasri F, McIntyre R. The utility of smartphone-based, ecological momentary assessment for depressive symptoms. Journal of Affective Disorders 2020;274:602 View
  8. Balaskas A, Schueller S, Cox A, Doherty G, Myers B. Ecological momentary interventions for mental health: A scoping review. PLOS ONE 2021;16(3):e0248152 View
  9. Basantani A, Kesarwani Y, Bhatia S, Jain S. EmoCure: Utilising Social Media Data and Smartphones to Predict and Cure Depression. IOP Conference Series: Materials Science and Engineering 2021;1110(1):012010 View
  10. Sadeghian A, Kaedi M. Happiness recognition from smartphone usage data considering users’ estimated personality traits. Pervasive and Mobile Computing 2021;73:101389 View
  11. Wang Z, Xiong H, Zhang J, Yang S, Boukhechba M, Zhang D, Barnes L, Dou D. From Personalized Medicine to Population Health: A Survey of mHealth Sensing Techniques. IEEE Internet of Things Journal 2022;9(17):15413 View
  12. Bocu R, Bocu D, Iavich M. An Extended Review Concerning the Relevance of Deep Learning and Privacy Techniques for Data-Driven Soft Sensors. Sensors 2022;23(1):294 View
  13. Tikhonova O, Antonov A, Bogomolov Y, Khulbe D, Sobolevsky S. Detecting a citizens' activity profile of an urban territory through natural language processing of social media data. Procedia Computer Science 2022;212:11 View
  14. Jin H, Nath S, Schneider S, Junghaenel D, Wu S, Kaplan C. An informatics approach to examine decision-making impairments in the daily life of individuals with depression. Journal of Biomedical Informatics 2021;122:103913 View
  15. Delgado-Santos P, Stragapede G, Tolosana R, Guest R, Deravi F, Vera-Rodriguez R. A Survey of Privacy Vulnerabilities of Mobile Device Sensors. ACM Computing Surveys 2022;54(11s):1 View
  16. Banjar H, Alsefri L, Alshomrani A, Hamdhy M, Alahmari S, Sharaf S, Morgan J. Activating the Mobile User Interface With a Rule‐Based Chatbot and EEG‐Based Emotion Recognition to Aid in Coping With Negative Emotions. Human Behavior and Emerging Technologies 2024;2024(1) View
  17. Oh K, Ko J, ­Jin N, Han S, Yoon C, Shin J, Ko M. Understanding Morning Emotions by Analyzing Daily Wake-Up Alarm Usage: Longitudinal Observational Study. JMIR Human Factors 2024;11:e50835 View
  18. Bosma C, Wojcik C, Haigh E. Evaluating Individual Differences in Emotion Regulation in Response to Sadness Using Digital Phenotyping. Journal of Technology in Behavioral Science 2024 View

Books/Policy Documents

  1. Nenko A, Petrova M. Digital Transformation and Global Society. View
  2. Ebert D, Harrer M, Apolinário-Hagen J, Baumeister H. Frontiers in Psychiatry. View
  3. Rozgonjuk D, Elhai J, Hall B. Digital Phenotyping and Mobile Sensing. View
  4. Bhatia S, Kesarwani Y, Basantani A, Jain S. Proceedings of the International Conference on Paradigms of Computing, Communication and Data Sciences. View
  5. Beierle F. Integrating Psychoinformatics with Ubiquitous Social Networking. View
  6. Beierle F. Integrating Psychoinformatics with Ubiquitous Social Networking. View
  7. Politou E, Alepis E, Virvou M, Patsakis C. Privacy and Data Protection Challenges in the Distributed Era. View
  8. Rozgonjuk D, Elhai J, Hall B. Digital Phenotyping and Mobile Sensing. View
  9. Bocu R, Bocu D. Advanced Information Networking and Applications. View