Published on in Vol 6, No 8 (2017): August

Automating Construction of Machine Learning Models With Clinical Big Data: Proposal Rationale and Methods

Automating Construction of Machine Learning Models With Clinical Big Data: Proposal Rationale and Methods

Automating Construction of Machine Learning Models With Clinical Big Data: Proposal Rationale and Methods

Journals

  1. Wu J, Tsai C, Ho T, Lai F, Tai H, Lin M. A Unified Framework for Automatic Detection of Wound Infection with Artificial Intelligence. Applied Sciences 2020;10(15):5353 View
  2. Alaa A, van der Schaar M. Prognostication and Risk Factors for Cystic Fibrosis via Automated Machine Learning. Scientific Reports 2018;8(1) View
  3. Luo G. A roadmap for semi-automatically extracting predictive and clinically meaningful temporal features from medical data for predictive modeling. Global Transitions 2019;1:61 View
  4. Nelson C, Ekberg J, Fridell K. Prostate Cancer Detection in Screening Using Magnetic Resonance Imaging and Artificial Intelligence. The Open Artificial Intelligence Journal 2020;6(1):1 View
  5. D’Argenio V. The High-Throughput Analyses Era: Are We Ready for the Data Struggle?. High-Throughput 2018;7(1):8 View
  6. Luo G. Toward a Progress Indicator for Machine Learning Model Building and Data Mining Algorithm Execution. ACM SIGKDD Explorations Newsletter 2017;19(2):13 View
  7. Luo G, Stone B, Koebnick C, He S, Au D, Sheng X, Murtaugh M, Sward K, Schatz M, Zeiger R, Davidson G, Nkoy F. Using Temporal Features to Provide Data-Driven Clinical Early Warnings for Chronic Obstructive Pulmonary Disease and Asthma Care Management: Protocol for a Secondary Analysis. JMIR Research Protocols 2019;8(6):e13783 View
  8. Dong Q, Luo G. Progress Indication for Deep Learning Model Training: A Feasibility Demonstration. IEEE Access 2020;8:79811 View
  9. Wang H, Hsu W, Lee M, Weng H, Chang S, Yang J, Tsai Y. Automatic Machine-Learning-Based Outcome Prediction in Patients With Primary Intracerebral Hemorrhage. Frontiers in Neurology 2019;10 View
  10. Luo G. Progress Indication for Machine Learning Model Building. ACM SIGKDD Explorations Newsletter 2018;20(2):1 View
  11. Zeng X, Luo G. Progressive sampling-based Bayesian optimization for efficient and automatic machine learning model selection. Health Information Science and Systems 2017;5(1) View
  12. Luo G, Tarczy-Hornoch P, Wilcox A, Lee E. Identifying Patients Who Are Likely to Receive Most of Their Care From a Specific Health Care System: Demonstration via Secondary Analysis. JMIR Medical Informatics 2018;6(4):e12241 View
  13. Yang F, Elmer J, Zadorozhny V. SmartPrognosis: Automatic ensemble classification for quantitative EEG analysis in patients resuscitated from cardiac arrest. Knowledge-Based Systems 2021;212:106579 View
  14. Mustafa A, Rahimi Azghadi M. Automated Machine Learning for Healthcare and Clinical Notes Analysis. Computers 2021;10(2):24 View
  15. Bang C, Lim H, Jeong H, Hwang S. Use of Endoscopic Images in the Prediction of Submucosal Invasion of Gastric Neoplasms: Automated Deep Learning Model Development and Usability Study. Journal of Medical Internet Research 2021;23(4):e25167 View
  16. Luo G, Stone B, Sheng X, He S, Koebnick C, Nkoy F. Using Computational Methods to Improve Integrated Disease Management for Asthma and Chronic Obstructive Pulmonary Disease: Protocol for a Secondary Analysis. JMIR Research Protocols 2021;10(5):e27065 View
  17. Banerjee P. MODIS-FIRMS and ground-truthing-based wildfire likelihood mapping of Sikkim Himalaya using machine learning algorithms. Natural Hazards 2022;110(2):899 View
  18. Dong Q, Zhang X, Luo G. Improving the Accuracy of Progress Indication for Constructing Deep Learning Models. IEEE Access 2022;10:63754 View
  19. Randall J, DuPai C, Cole T, Davidson G, Groover K, Slater S, Mavridou D, Wilke C, Davies B. Designing and identifying β-hairpin peptide macrocycles with antibiotic potential. Science Advances 2023;9(2) View
  20. Gong E, Bang C, Lee J, Seo S, Yang Y, Baik G, Kim J. No-Code Platform-Based Deep-Learning Models for Prediction of Colorectal Polyp Histology from White-Light Endoscopy Images: Development and Performance Verification. Journal of Personalized Medicine 2022;12(6):963 View
  21. Tschoellitsch T, Krummenacker S, Dünser M, Stöger R, Meier J. The Value of the First Clinical Impression as Assessed by 18 Observations in Patients Presenting to the Emergency Department. Journal of Clinical Medicine 2023;12(2):724 View
  22. Garg P, De Plaen I, Christensen R, Khashu M, Dame C, Lavoie P, Sampath V, Malhotra A, Caplan M, Agrawal P, Buonocore G, Maheshwari A. Current Understanding of Transfusion-associated Necrotizing Enterocolitis: Review of Clinical and Experimental Studies and a Call for More Definitive Evidence. Newborn 2022;1(1):201 View
  23. Vagliano I, Schut M, Abu-Hanna A, Dongelmans D, de Lange D, Gommers D, Cremer O, Bosman R, Rigter S, Wils E, Frenzel T, de Jong R, Peters M, Kamps M, Ramnarain D, Nowitzky R, Nooteboom F, de Ruijter W, Urlings-Strop L, Smit E, Mehagnoul-Schipper D, Dormans T, de Jager C, Hendriks S, Achterberg S, Oostdijk E, Reidinga A, Festen-Spanjer B, Brunnekreef G, Cornet A, van den Tempel W, Boelens A, Koetsier P, Lens J, Faber H, Karakus A, Entjes R, de Jong P, Rettig T, Reuland M, Arbous S, Fleuren L, Dam T, Thoral P, Lalisang R, Tonutti M, de Bruin D, Elbers P, de Keizer N. Assess and validate predictive performance of models for in-hospital mortality in COVID-19 patients: A retrospective cohort study in the Netherlands comparing the value of registry data with high-granular electronic health records. International Journal of Medical Informatics 2022;167:104863 View
  24. A. Romero R, Y. Deypalan M, Mehrotra S, Jungao J, Sheils N, Manduchi E, Moore J. Benchmarking AutoML frameworks for disease prediction using medical claims. BioData Mining 2022;15(1) View
  25. Baker T, Loh W, Piasecki T, Bolt D, Smith S, Slutske W, Conner K, Bernstein S, Fiore M. A machine learning analysis of correlates of mortality among patients hospitalized with COVID-19. Scientific Reports 2023;13(1) View
  26. Beam K, Wang C, Beam A, Clark R, Tolia V, Ahmad K. National Needs Assessment of Utilization of Common Newborn Clinical Decision Support Tools. American Journal of Perinatology 2024;41(S 01):e1982 View
  27. Imrie F, Cebere B, McKinney E, van der Schaar M, Guillot G. AutoPrognosis 2.0: Democratizing diagnostic and prognostic modeling in healthcare with automated machine learning. PLOS Digital Health 2023;2(6):e0000276 View
  28. Dong Q, Luo G. Progress Estimation for End-to-End Training of Deep Learning Models With Online Data Preprocessing. IEEE Access 2024;12:18658 View
  29. Patnaik A, K. K. Intelligent Decision Support System in Healthcare using Machine Learning Models. Recent Patents on Engineering 2024;18(5) View
  30. Salazar R, Nair S, Leone A, Xu T, Mumme R, Duryea J, De B, Corrigan K, Rooney M, Ning M, Das P, Holliday E, Liao Z, Court L, Niedzielski J. Performance Comparison of 10 State-of-the-Art Machine Learning Algorithms for Outcome Prediction Modeling of Radiation-Induced Toxicity. Advances in Radiation Oncology 2025;10(2):101675 View
  31. Bittelli M, Francia M, Giovanelli J, Golfarelli M, Tomei F. An auto-tuning process-based 3D model to forecast irrigation demand in kiwifruit. Ecological Informatics 2025;85:102947 View

Books/Policy Documents

  1. Sacchini D, Spagnolo A. Clinical Ethics At the Crossroads of Genetic and Reproductive Technologies. View
  2. Sacchini D, Spagnolo A. Clinical Ethics At the Crossroads of Genetic and Reproductive Technologies. View