Published on in Vol 7, No 9 (2018): September
Preprints (earlier versions) of this paper are
available at
https://preprints.jmir.org/preprint/9466, first published
.
Journals
- Romero-Brufau S, Wyatt K, Boyum P, Mickelson M, Moore M, Cognetta-Rieke C. Implementation of Artificial Intelligence-Based Clinical Decision Support to Reduce Hospital Readmissions at a Regional Hospital. Applied Clinical Informatics 2020;11(04):570 View
- Scardoni A, Balzarini F, Signorelli C, Cabitza F, Odone A. Artificial intelligence-based tools to control healthcare associated infections: A systematic review of the literature. Journal of Infection and Public Health 2020;13(8):1061 View
- Rippe W, Dittberner A, Boeger D, Buentzel J, Hoffmann K, Kaftan H, Mueller A, Radtke G, Guntinas-Lichius O, Dziegielewski P. 30-day unplanned readmission rate in otolaryngology patients: A population-based study in Thuringia, Germany. PLOS ONE 2019;14(10):e0224146 View
- Lv H, Yang X, Wang B, Wang S, Du X, Tan Q, Hao Z, Liu Y, Yan J, Xia Y. Machine Learning–Driven Models to Predict Prognostic Outcomes in Patients Hospitalized With Heart Failure Using Electronic Health Records: Retrospective Study. Journal of Medical Internet Research 2021;23(4):e24996 View
- Lotierzo M, Bruno R, Finan-Marchi A, Huet F, Kalmanovich E, Rodrigues G, Dupuy A, Adda J, Piquemal D, Richard S, Cristol J, Roubille F. Could a Multi-Marker and Machine Learning Approach Help Stratify Patients with Heart Failure?. Medicina 2021;57(10):996 View
- Błaziak M, Urban S, Wietrzyk W, Jura M, Iwanek G, Stańczykiewicz B, Kuliczkowski W, Zymliński R, Pondel M, Berka P, Danel D, Biegus J, Siennicka A. An Artificial Intelligence Approach to Guiding the Management of Heart Failure Patients Using Predictive Models: A Systematic Review. Biomedicines 2022;10(9):2188 View
- Kwon O, Na W, Kang H, Jun T, Kweon J, Park G, Cho Y, Hur C, Chae J, Kang D, Lee P, Ahn J, Park D, Kang S, Lee S, Lee C, Park S, Park S, Yang D, Kim Y. Electronic Medical Record–Based Machine Learning Approach to Predict the Risk of 30-Day Adverse Cardiac Events After Invasive Coronary Treatment: Machine Learning Model Development and Validation. JMIR Medical Informatics 2022;10(5):e26801 View
- Daye D, Parker R, Tripathi S, Cox M, Brito Orama S, Valentin L, Bridge C, Uppot R. CASCADE: Context-Aware Data-Driven AI for Streamlined Multidisciplinary Tumor Board Recommendations in Oncology. Cancers 2024;16(11):1975 View