Published on in Vol 9, No 7 (2020): July

Preprints (earlier versions) of this paper are available at https://preprints.jmir.org/preprint/16843, first published .
Deep Learning Frameworks for Rapid Gram Stain Image Data Interpretation: Protocol for a Retrospective Data Analysis

Deep Learning Frameworks for Rapid Gram Stain Image Data Interpretation: Protocol for a Retrospective Data Analysis

Deep Learning Frameworks for Rapid Gram Stain Image Data Interpretation: Protocol for a Retrospective Data Analysis

Journals

  1. Zellmer C, Tran T, Sridhar S. Seeing the bigger picture. Nature Reviews Microbiology 2021;19(12):745 View
  2. Ferrell B. Fine-tuning Strategies for Classifying Community-Engaged Research Studies Using Transformer-Based Models: Algorithm Development and Improvement Study. JMIR Formative Research 2023;7:e41137 View
  3. Kim H, Maros M, Siegel F, Ganslandt T. Rapid Convolutional Neural Networks for Gram-Stained Image Classification at Inference Time on Mobile Devices: Empirical Study from Transfer Learning to Optimization. Biomedicines 2022;10(11):2808 View
  4. Herman D, Rhoads D, Schulz W, Durant T. Artificial Intelligence and Mapping a New Direction in Laboratory Medicine: A Review. Clinical Chemistry 2021;67(11):1466 View
  5. Weis C, Weihrauch K, Kriegsmann K, Kriegsmann M. Unsupervised Segmentation in NSCLC: How to Map the Output of Unsupervised Segmentation to Meaningful Histological Labels by Linear Combination?. Applied Sciences 2022;12(8):3718 View
  6. Kim H, Maros M, Miethke T, Kittel M, Siegel F, Ganslandt T. Lightweight Visual Transformers Outperform Convolutional Neural Networks for Gram-Stained Image Classification: An Empirical Study. Biomedicines 2023;11(5):1333 View
  7. Hindy J, Souaid T, Kovacs C. Capabilities of GPT-4o and Gemini 1.5 Pro in Gram stain and bacterial shape identification. Future Microbiology 2024;19(15):1283 View
  8. Lee M, Tsai Y, Huang T, Liew D, Candia I, Chang Y. Alignment-free bacterial pathogen identification using vision transformer and image augmentation techniques in high-resolution microscopy. Biomedical Signal Processing and Control 2026;112:108401 View
  9. Sroka-Oleksiak A, Pardyl A, Rymarczyk D, Olechowska-Jarząb A, Biegun-Drożdż K, Ochońska D, Wronka M, Borowa A, Gosiewski T, Adamczyk M, Telega H, Zieliński B, Brzychczy-Włoch M. AI-driven rapid identification of bacterial and fungal pathogens in blood smears of septic patients. Computers in Biology and Medicine 2025;199:111328 View

Books/Policy Documents

  1. Shree Kumari G, Mohanasrinivasan V, Ravi L, Poornima D. Artificial Intelligence in Microbiology. View

Conference Proceedings

  1. Sugimoto H, Hirata K. 2022 12th International Congress on Advanced Applied Informatics (IIAI-AAI). Object Detection as Gram Positive Cocci in Gram Stained Smear Images View
  2. Kawano I, Kurumida E, Terada S, Hirata K. 2022 12th International Congress on Advanced Applied Informatics (IIAI-AAI). Classifying Gram Positive Cocci and Gram Negative Bacilli in Gram Stained Smear Images View
  3. Sugimoto H, Funatsu R, Hirata K. 2023 14th IIAI International Congress on Advanced Applied Informatics (IIAI-AAI). Predicting Geckler Classification from Gram Stained Smears Images for Sputum: Image Classification versus Object Detection View
  4. Kashino U, Terada S, Hirata K. 2023 14th IIAI International Congress on Advanced Applied Informatics (IIAI-AAI). Detecting Infectious Disease-Causing Bacteria from Gram Stained Smears Images View
  5. Kashino U, Taira K, Hirata K. Proceedings of the 2024 7th International Conference on Digital Medicine and Image Processing. Detecting Bacteria from Gram Stained Smears Images by the Family of YOLOs View